期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
面向注意力缺陷多动障碍分类的多分辨率时空融合图卷积网络
1
作者 宋笑影 郝春雨 柴利 《电子与信息学报》 北大核心 2025年第6期1927-1936,共10页
神经发育障碍疾病患者的精准分类是医学领域的一项重要挑战,对于疾病诊断和指导治疗至关重要。然而,现有基于图卷积网络(GCNs)的方法通常采用单一分辨率空间特征,忽视了多分辨率下的空间信息以及时间信息。为了克服上述局限性,该文提出... 神经发育障碍疾病患者的精准分类是医学领域的一项重要挑战,对于疾病诊断和指导治疗至关重要。然而,现有基于图卷积网络(GCNs)的方法通常采用单一分辨率空间特征,忽视了多分辨率下的空间信息以及时间信息。为了克服上述局限性,该文提出一种多分辨率时空融合图卷积网络(MSTF-GCN)。在多个分辨率空间下构建多个大脑功能连通性网络,使用支持向量机-递归特征消除提取最优空间特征。为了保留全局时间信息并使网络具有捕获信号不同层次变化的能力,将全局时间信号及其差分信号输入到时间卷积网络中学习复杂时间维度的依赖关系,提取时间特征。结合时空信息构建群体图,利用多通道图卷积网络灵活地融合不同分辨率的群体图数据,最后融入非成像数据信息生成有效的多通道多类型时空融合分类特征,有效提升了MSTF-GCN模型的分类性能。将MSTF-GCN应用于注意力缺陷多动障碍(ADHD)患者分类识别,在ADHD-200数据集两个成像站点上的分类准确率分别达到了75.92%和82.95%,实验结果优于已有的流行算法,验证了MSTF-GCN的有效性。 展开更多
关键词 多分辨率时空融合图卷网络 时空融合 多分辨率 注意力缺陷多动障碍
在线阅读 下载PDF
基于平行多尺度时空图卷积网络的三维人体姿态估计算法
2
作者 杨红红 刘泓希 +1 位作者 张玉梅 吴晓军 《软件学报》 北大核心 2025年第5期2151-2166,共16页
针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(D... 针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(DDA-STGConv),构建跨域时空邻接矩阵,对骨架关节点信息进行基于自约束和注意力机制约束的建模,增强节点间的信息交互;然后,通过设计图拓扑聚合函数构造不同的图拓扑结构,以DDA-STGConv为基本单元构建平行多尺度子网络模块(PM-SubGNet);最后,为了更好地提取骨架关节的上下文信息,设计多尺度特征交叉融合模块(MFEB),实现平行子图网络之间多尺度信息的交互,提高GCN的特征表示能力.在主流3D姿态估计数据集Human3.6M和MPI-INF-3DHP数据集上的对比实验结果表明,所提PMST-GNet模型在三维人体姿态估计中具有较好的效果,优于Sem-GCN、GraphSH、UGCN等当前基于GCN网络的主流算法. 展开更多
关键词 三维人体姿态估计 对角占优的时空注意力图卷积 平行多尺度子网络 多尺度特征交叉融合
在线阅读 下载PDF
基于双重注意力时空图卷积网络的行人轨迹预测 被引量:3
3
作者 向晓倩 陈璟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2586-2595,共10页
当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用... 当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用时间注意力捕获行人前后帧的关联性,利用空间注意力获取周围行人之间的相关性,通过时空图卷积进一步提取行人之间的时空相关性.引入可学习的抽样网络解决随机抽样导致的分布不均匀的问题.大量实验表明,在ETH和UCY数据集上,新方法的精度与当前最先进的方法相当,且模型参数量减少1.65×10^(4),推理时间缩短0.147 s;在SDD数据集上精度虽略有下降,但模型参数量减少了3.46×10^(4),展现出良好的性能平衡,能为行人轨迹预测提供新的有效途径. 展开更多
关键词 轨迹预测 深度学习 图卷网络 时空图卷 时间注意力 空间注意力 轨迹采样
在线阅读 下载PDF
基于扩展时间和时空特征融合图卷积网络的骨架行为识别
4
作者 徐永刚 孙琦烜 +2 位作者 李凡甲 程健维 戴佳俊 《计算机工程》 北大核心 2025年第4期281-292,共12页
在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合... 在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合图卷积网络(ETFF-GCN)。该网络采用通道聚合的方法对动态空间拓扑和时序特征进行一次融合,然后运用注意力机制进行二次融合,进一步增强融合效果。在此基础上,为了全面提取时序特征,采用多个不同大小的卷积核构建时域图卷积,以提取多尺度和多粒度的时间特征,并引入有效压缩激励模块进行特征增强,提升特征表达能力。在3个大型数据集上对所提出的方法进行评估,实验结果表明,该方法的性能优于现有的方法。 展开更多
关键词 人体骨架行为识别 图卷网络 时空特征融合 注意力机制 扩展时间
在线阅读 下载PDF
基于多时空图融合与动态注意力的交通流预测
5
作者 翟志鹏 曹阳 +1 位作者 沈琴琴 施佺 《计算机工程》 北大核心 2025年第9期139-148,共10页
精准的交通流预测是实现智能交通系统的关键前提,对加强系统的仿真和控制、提高管理者的决策等方面具有重要意义。针对大多数现有的图卷积网络(GCN)模型忽略交通流数据的动态时空变化、对节点信息使用不足导致时空相关性提取不充分的问... 精准的交通流预测是实现智能交通系统的关键前提,对加强系统的仿真和控制、提高管理者的决策等方面具有重要意义。针对大多数现有的图卷积网络(GCN)模型忽略交通流数据的动态时空变化、对节点信息使用不足导致时空相关性提取不充分的问题,提出一种基于多时空图融合与动态注意力的交通流预测模型。首先,以不同的卷积单元提取交通流数据中多时域状态下的时间特征;然后,构建多时空图体现节点在空间分布中的动态变化趋势和异质性,并结合GCN提取空间特征;最后,利用多头自注意力机制分别对时空特征进行分析与融合,输出预测结果。在两个实际的公共数据集PeMS04和PeMS08上进行实验分析,并与基于注意力的时空图卷积网络(ASTGCN)、多视角的时空Transformer网络(MVSTT)和动态时空感知图神经网络(DSTAGNN)等基于时空图卷积网络的基准模型对比,结果表明所提模型在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)指标上分别平均降低了7.10%、7.22%和6.47%,具有较强的适应性和鲁棒性。 展开更多
关键词 智能交通系统 交通流预测 时空特征 图卷网络 多头自注意力机制
在线阅读 下载PDF
基于时空图注意力卷积神经网络的车辆轨迹预测 被引量:3
6
作者 袁静 夏英 《计算机科学》 CSCD 北大核心 2024年第12期157-165,共9页
车辆轨迹预测是交通管理、智能汽车和自动驾驶等领域的一项关键技术。准确预测车辆轨迹,有利于汽车安全行驶。城市交通场景中,车辆轨迹数据的时空特征复杂多变。为充分获取数据中的动态时空相关性,提高轨迹预测精度,同时降低模型复杂度... 车辆轨迹预测是交通管理、智能汽车和自动驾驶等领域的一项关键技术。准确预测车辆轨迹,有利于汽车安全行驶。城市交通场景中,车辆轨迹数据的时空特征复杂多变。为充分获取数据中的动态时空相关性,提高轨迹预测精度,同时降低模型复杂度,提出了时空图注意力卷积神经网络模型(Spatial-Temporal Graph Attention Convolutional Network,STGACN)。该模型首先通过轨迹信息嵌入模块对车辆历史轨迹数据进行时空图转换,然后通过时空卷积块及其堆叠完成轨迹数据的时序特征和空间特征的提取与融合,最终由门控递归单元完成编码与解码工作,得到预测轨迹。模型采用由膨胀因果卷积和门控单元组成的门控卷积网络提取时序特征,避免了循环神经网络带来的冗余迭代,使得模型参数更少,轨迹预测推理速度更快;时空卷积块组的时空特征融合工作使模型关注到更丰富的场景特征,提高了预测精度。在真实轨迹数据集Argoverse和NGSIM上进行实验,结果表明STGACN模型与基线模型相比,具有更高的预测精度和效率。 展开更多
关键词 车辆轨迹预测 时空相关性 时空 图卷网络 注意力机制
在线阅读 下载PDF
基于周期图卷积与多头注意力GRU组合的交通流量预测模型 被引量:4
7
作者 钟林岚 张安勤 田秀霞 《计算机应用研究》 CSCD 北大核心 2024年第4期1041-1046,共6页
为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gate... 为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gated recurrent unit,MAGRU)组合的交通流量预测模型。首先,模型的时空数据融合模块利用交通流量的周期相似性构建周期图,同时将空间和时间编码信息添加至交通流量序列数据;然后在时空特征提取模块中,GCN子模块捕获周期特征图中的空间特征,MAGRU子模块捕获序列数据中的时间特征;最后通过门控融合机制将两者提取的时空特征进行融合。模型在两个真实的交通流量数据集上进行了实验。结果表明,该模型相较于多个最新基准模型,在MAE、RMSE、MAPE三个预测误差指标上平均降低了5.4%、22.8%、10.3%,R2精确度指标平均提高了11.6%。说明模型在预测精度方面有显著的改进,并能有效减少误差累积效应。 展开更多
关键词 交通流量预测 图卷网络 多头注意力机制 门控循环单元 门控融合机制 时空融合
在线阅读 下载PDF
基于引导图卷积网络的人体动作轮廓动态识别
8
作者 鲁光男 李柯景 岳莉 《现代电子技术》 北大核心 2025年第21期101-104,共4页
为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;... 为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;建立跨时空图结构,描述不同视频帧人体关键点之间的时间依赖关系,设计多尺度邻接矩阵,捕捉人体动作的跨时空相关性;引入注意力机制对不同尺度的邻接矩阵进行权重分配,确定关键关节点间的关系;基于频谱图理论对人体骨架时空图进行时空卷积操作,深入挖掘空间维度上的信号关联性,并捕捉节点信号随时间的演变,通过全连接层进行降维和激活函数处理,输出人体动作轮廓动态识别结果。结果表明:文中方法能够有效地捕捉人体动作的时空特征,对于不同场景下和不同复杂程度的动作类型,该方法的人体动作轮廓动态识别准确性均在90%以上,证明所提方法具有较高的准确性和鲁棒性。 展开更多
关键词 OpenPose模型 图卷网络 注意力机制 频谱图理论 人体骨架时空 时空特性
在线阅读 下载PDF
动静图融合和时序流注意力网络用于交通流预测
9
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 注意力机制 图卷网络 特征融合
在线阅读 下载PDF
融合区域相似性的时空卷积交通事故风险预测
10
作者 王庆荣 饶会会 +1 位作者 朱昌锋 和蓉 《控制工程》 北大核心 2025年第10期1748-1759,共12页
针对现有交通事故风险预测模型对区域空间相关性和动态时空特征提取不足的问题,基于融合区域相似性的时空卷积网络构建了交通事故风险预测模型。首先,基于图卷积网络构建了空间通道注意力多图卷积网络,以全面捕捉局部地理空间相似性和... 针对现有交通事故风险预测模型对区域空间相关性和动态时空特征提取不足的问题,基于融合区域相似性的时空卷积网络构建了交通事故风险预测模型。首先,基于图卷积网络构建了空间通道注意力多图卷积网络,以全面捕捉局部地理空间相似性和全局语义属性;其次,引入时空注意力,自适应地学习事故特征的动态表征;最后,通过多头图注意力网络捕捉空间依赖性,并利用融合双向时序卷积的门控单元建模长序列时间相关性。实验在两个真实的交通事故数据集上对所提模型进行了验证。实验结果表明,所提模型对交通事故风险的预测性能优于长短时记忆神经网络等基准模型。 展开更多
关键词 智能交通 风险预测 图卷网络 注意力机制 时空
在线阅读 下载PDF
基于多尺度时空图卷积网络的交通出行需求预测 被引量:1
11
作者 李欢欢 黄添强 +2 位作者 丁雪梅 罗海峰 黄丽清 《计算机应用》 CSCD 北大核心 2024年第7期2065-2072,共8页
满足公众高质量出行需求是智能交通系统(ITS)的主要挑战之一。目前,针对公共交通出行需求预测问题,现有模型大多采用固定结构的图描述出行需求的空间相关性,忽略了出行需求在不同尺度下具有不同的空间依赖关系。针对上述问题,提出一种... 满足公众高质量出行需求是智能交通系统(ITS)的主要挑战之一。目前,针对公共交通出行需求预测问题,现有模型大多采用固定结构的图描述出行需求的空间相关性,忽略了出行需求在不同尺度下具有不同的空间依赖关系。针对上述问题,提出一种多尺度时空图卷积网络(MSTGCN)模型。该模型首先从全局尺度和局部尺度构建全局需求相似图和局部需求相似图,这2种图可以捕获公共交通出行需求长期内较为稳定的全局特征和短期内动态变化的局部特征。利用图卷积网络(GCN)提取2种图中的全局空间信息和局部空间信息,并引入注意力机制融合两种空间信息。为了拟合时间序列中潜藏的时间依赖关系,利用门控循环单元(GRU)捕捉公共交通需求的时变特征。采用纽约市出租车订单数据集和自行车订单数据集进行实验,结果表明MSTGCN模型在自行车订单数据集上均方根误差(RMSE)、平均绝对误差(MAE)和皮尔逊相关系数(PCC)达2.7886、1.7371、0.7992,在出租车订单数据集上RMSE、MAE、PCC达9.5734、5.8612、0.9631。可见,MSTGCN模型可以有效地挖掘公共交通出行需求的多尺度时空特性,对未来公共交通出行需求进行准确预测。 展开更多
关键词 公共交通出行需求预测 图卷网络 时空数据挖掘 注意力机制 深度学习 智能交通系统
在线阅读 下载PDF
面向交通流量预测的多头注意力时空卷积图网络模型 被引量:8
12
作者 夏英 石栀琦 《计算机应用研究》 CSCD 北大核心 2023年第3期766-770,共5页
为了充分获取交通流量数据中隐藏的复杂动态时空相关性,提高交通流量预测精度,提出一种多头注意力时空卷积图网络模型MASCGN。首先,采用多头注意力机制为路网中的交通传感器节点自动分配注意力权重,实现对不同邻居节点的权值自适应匹配... 为了充分获取交通流量数据中隐藏的复杂动态时空相关性,提高交通流量预测精度,提出一种多头注意力时空卷积图网络模型MASCGN。首先,采用多头注意力机制为路网中的交通传感器节点自动分配注意力权重,实现对不同邻居节点的权值自适应匹配,充分获取空间相关性;其次,采用带有门控和注意力机制的时空卷积网络充分提取时间序列相关性,并使用残差块结构实现时空卷积层之间的连接,使得模型更具有泛化能力;最后,分别提取周相关、日相关、邻近时间的序列数据,输入三个并行的时空组件以挖掘周、日、邻近三个时间窗口间的时间周期相关性,并通过全连接层获取最终的交通流量预测结果。利用高速公路交通数据集PEMSO4、PEMSO8进行了15 min、30 min、45 min和60 min的交通流量预测实验。实验结果表明MASCGN模型与现有基线模型相比,在未来短期和长期的交通流量预测任务上都具有更优的建模能力。 展开更多
关键词 交通流量预测 动态时空相关性 多头注意力机制 图卷
在线阅读 下载PDF
时空特性下基于图卷积神经网络的风电集群功率短期预测方法 被引量:2
13
作者 乔宽龙 董存 +2 位作者 车建峰 蒋建东 王勃 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期95-103,共9页
为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先... 为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先,计算区域内风电场站历史功率之间的互信息,提取特征邻接矩阵,并结合影响集群功率的气象特征变量转化为气象图数据。其次,构建图卷积神经网络(GCN)模型,从非欧式空间提取气象图节点关联特征。并馈入融合注意力机制(AM)的门控循环单元网络(GRU)增强时序特征中关键信息对风电集群功率的贡献程度。最后,基于中国西部某省风电集群的实际运行数据,验证所提方法的先进性和适应性。 展开更多
关键词 风电功率 图数据结构 深度学习 时空特性 图卷神经网络 注意力机制
在线阅读 下载PDF
用于交通流量预测的多图扩散注意力网络
14
作者 王泉 陆啟想 施珮 《计算机应用》 北大核心 2025年第5期1472-1479,共8页
当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MG... 当前基于时空特征提取的交通流量预测方法中存在挖掘全局空间相关性与长期的动态时间依赖关系能力不足的问题,其中空间相关性的挖掘很大程度上取决于图结构的质量,为此提出一种多图扩散注意力网络(MGDAN),主要包括多图扩散注意力模块(MGDAM)和时间注意力模块。首先,使用自适应时空嵌入生成器构建动态的时空信息;其次,采用最大互信息系数(MIC)矩阵与自适应矩阵挖掘细粒度的空间信息,并利用全局空间注意力机制挖掘动态的空间相关性;最后,使用时间注意力模块提取非线性的时间相关性,并通过3个模块的结合实现时空相关性的有效提取。在PEMS08数据集上的实验结果表明,MGDAN在1 h内的平均绝对误差(MAE)相较于时空自编码器(ST_AE)和时空身份信息(STID)模型分别降低了19.34%和5.74%,且整体预测性能均优于9个基线模型,能够精准地进行中长期交通流量预测,为城市交通疏导提供理论依据。 展开更多
关键词 交通流量预测 时空模型 自适应时空嵌入 图卷网络 注意力网络
在线阅读 下载PDF
基于时空自适应图卷积循环网络的风电功率预测 被引量:1
15
作者 任润虎 戴天乐 郭巨新 《电力系统及其自动化学报》 CSCD 北大核心 2024年第12期93-100,共8页
针对传统图卷积模型仅考虑静态或动态邻接矩阵的单一生成方式,以及建模风电场机组之间的时空相关性上具有较强的局限性,提出一种融合静态邻接矩阵和动态邻接矩阵的时空自适应模型。首先,根据风电场节点间的空间距离及差分相似性特征,预... 针对传统图卷积模型仅考虑静态或动态邻接矩阵的单一生成方式,以及建模风电场机组之间的时空相关性上具有较强的局限性,提出一种融合静态邻接矩阵和动态邻接矩阵的时空自适应模型。首先,根据风电场节点间的空间距离及差分相似性特征,预定义静态邻接矩阵;其次,使用时空自注意力机制提取数据的高维特征,同时生成时空嵌入矩阵,用于引导动态邻接矩阵生成;最后,整合门控循环单元和图神经网络,融合预定义的静态邻接矩阵和实时生成的动态邻接矩阵,使用时空自适应图卷积循环模块进行风电功率预测。算例结果表明,所提模型有助于提高风电功率预测的预测精度。 展开更多
关键词 风电功率预测 时空注意力机制 图卷模型 门控循环单元
在线阅读 下载PDF
基于三维图卷积与注意力增强的行为识别模型 被引量:10
16
作者 曹毅 刘晨 +2 位作者 盛永健 黄子龙 邓小龙 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2071-2078,共8页
针对当前行为识别方法无法有效提取非欧式3维骨架序列的时空信息与缺乏针对特定关节关注的问题,该文提出了一种基于3维图卷积与注意力增强的行为识别模型。首先,介绍了3维卷积与图卷积的具体工作原理;其次,基于图卷积中可处理变长邻居... 针对当前行为识别方法无法有效提取非欧式3维骨架序列的时空信息与缺乏针对特定关节关注的问题,该文提出了一种基于3维图卷积与注意力增强的行为识别模型。首先,介绍了3维卷积与图卷积的具体工作原理;其次,基于图卷积中可处理变长邻居节点的图卷积核,引入3维卷积的3维采样空间将2维图卷积核改进为具有3维采样空间的3维图卷积核,提出一种3维图卷积方法。针对3维采样空间内的邻居节点,通过3维图卷积核,实现了对骨架序列中时空信息的有效提取;然后,为增强对于特定关节的关注,聚焦重要的动作信息,设计了一种注意力增强结构;再者,结合3维图卷积方法与注意力增强结构,构建了基于3维图卷积与注意力增强的行为识别模型;最后,基于NTU-RGBD和MSR Action 3D骨架动作数据集开展了骨架行为识别的研究。研究结果进一步验证了基于3维图卷积与注意力增强的行为识别模型针对时空信息的有效提取能力及识别准确率。 展开更多
关键词 行为识别 3维图卷 注意力增强 时空信息
在线阅读 下载PDF
基于注意力机制的PM2.5多阶图卷积网络推断模型 被引量:2
17
作者 彭一非 杨维 《计算机应用研究》 CSCD 北大核心 2022年第5期1491-1495,共5页
细颗粒物(PM2.5)与大气环境和人类生活息息相关。城市中PM2.5监测站数量有限,无法提供细粒度PM2.5浓度,而大多数现有的PM2.5浓度推断方法缺乏根据动态时空特征建立多阶相关系数矩阵的能力。为此提出了一种基于注意力机制的PM2.5多阶图... 细颗粒物(PM2.5)与大气环境和人类生活息息相关。城市中PM2.5监测站数量有限,无法提供细粒度PM2.5浓度,而大多数现有的PM2.5浓度推断方法缺乏根据动态时空特征建立多阶相关系数矩阵的能力。为此提出了一种基于注意力机制的PM2.5多阶图卷积网络推断模型(MOSTGCNInf)。该模型在利用图神经网络提取特征关系的同时,采用注意力机制动态构建多阶节点的注意力系数矩阵,并进行时空特征融合来提升PM2.5浓度推断效果。在公开数据集上进行了对比实验,使用准确率和F_(1)值作为评价指标,并通过消融实验验证了方法的有效性。实验结果表明,MOSTGCNInf对PM2.5浓度推断结果有提升作用。 展开更多
关键词 PM2.5 相关系数矩阵 多阶图卷 时空特征融合 注意力机制
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
18
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷网络 门控线性单元 注意力机制 图卷网络
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
19
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷神经网络 循环神经网络 深度学习
在线阅读 下载PDF
基于混合图卷积的多通道时空交通流预测模型 被引量:4
20
作者 张雄涛 郑景玉 +2 位作者 申情 孙丹枫 蒋云良 《电信科学》 2023年第9期97-110,共14页
针对交通流预测模型没有考虑道路上下文相关性和空间依赖关系动态性的问题,提出一种基于混合图卷积的多通道时空交通流预测模型(MHGCN)。该模型采用三明治结构(即中间多通道空间模块,两边时间模块)提取时空特征,多通道空间模块又分为静... 针对交通流预测模型没有考虑道路上下文相关性和空间依赖关系动态性的问题,提出一种基于混合图卷积的多通道时空交通流预测模型(MHGCN)。该模型采用三明治结构(即中间多通道空间模块,两边时间模块)提取时空特征,多通道空间模块又分为静态图卷积模块和动态图卷积模块。静态图卷积模块同时从拓扑空间结构、语义空间结构及其组合中提取特定和公共的特征;动态图卷积模块对不同的特征分配不同的权重,从未知的图结构中提取动态的空间特征。时间模块中采用多头注意力机制提取全局时间特征,采用时间门控机制提取局部时间特征。该模型从不同的空间结构中提取空间信息,从不同时间间隔提取时间信息,建立全局、全面的时空关系。实验结果表明,MHGCN模型在4个公开数据集上的性能优于现有的交通流预测模型。 展开更多
关键词 智能交通 动态图卷 多头注意力 时空相关性 多通道
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部