期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于声振信号对称极坐标图像的苹果霉心病早期检测
被引量:
9
1
作者
赵康
查志华
+1 位作者
李贺
吴杰
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第18期290-298,共9页
为实现苹果早期霉心病较高精度的检测,该研究采用对称极坐标法(Symmetrized Dot Pattern,SDP)将苹果声振信号变换为雪花图,然后采用AlexNet、VGG16和ResNet50卷积神经网络以迁移学习方式深度挖掘SDP雪花图像的特征信息,将其输入到支持...
为实现苹果早期霉心病较高精度的检测,该研究采用对称极坐标法(Symmetrized Dot Pattern,SDP)将苹果声振信号变换为雪花图,然后采用AlexNet、VGG16和ResNet50卷积神经网络以迁移学习方式深度挖掘SDP雪花图像的特征信息,将其输入到支持向量机(Support Vector Machine,SVM)分类器,对霉心程度≤7%的苹果进行检测。研究结果表明,当时间间隔系数为25和角度放大因子为50°时,健康果与早期霉心果声振信号的SDP图形状特征差异最大,在此条件下获取的SDP图经卷积神经网络AlexNet、VGG16和ResNet50提取特征并构建了不同核函数的SVM霉心果检测模型,在各类SVM模型中,ResNet50-SVM-gaus(高斯核)模型用相对较少的训练时间和参数量可取得训练集霉心果较高分类准确率,经超参数优化训练该模型对健康果和早期霉心果测试集不平衡样本(10∶1)的总体分类准确率达到96.97%,平均查准率、平均查全率、平均加权调和均值、Kappa系数和马修斯相关系数值分别为80.19%、90.36%、86.21%,82.54%和82.68%,该模型不仅对多数类的健康果保持较高分类准确率,而且对少数类的早期霉心果也具有较高判别能力。研究结果为声振法应用于果蔬内部病害的早期在线检测系统研发提供了技术支撑。
展开更多
关键词
无损检测
支持向量机
苹果霉心病
早期检测
声振
法
对称极坐标法
卷积神经网络
在线阅读
下载PDF
职称材料
基于改进SDP和FasterNet-GCAM的滚动轴承故障诊断
2
作者
陈家芳
唐湛恒
周健
《现代制造工程》
北大核心
2025年第7期129-138,41,共11页
对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized ...
对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized Dot Pattern,SDP)法和FasterNet-GCAM网络的滚动轴承故障诊断方法。首先,将一维振动信号经过小波阈值降噪处理,再输入经皮尔逊图像相关系数法优化的SDP法生成SDP图像,并通过在FasterNet网络中加入部分卷积(partial convolution)思想,构建成改进的SDP-FasterNet模型进行进一步的特征提取,并完成滚动轴承不同故障的分类诊断。为了验证模型在图像识别过程中决策的可信度,将梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)与FasterNet网络相结合,突出SDP图像与决策相关的重要部分。试验结果表明,所提方法相比于其他方法具有更快的收敛速度和更强的鲁棒性,且诊断识别精度达到了99.20%,并提高了诊断过程中的可解释性及可信度,为故障诊断领域提供了具备良好可行性和鲁棒性的轻量化诊断模型。
展开更多
关键词
滚动轴承
故障诊断
FasterNet网络
部分卷积
梯度加权类激活映射
对称极坐标法
在线阅读
下载PDF
职称材料
题名
基于声振信号对称极坐标图像的苹果霉心病早期检测
被引量:
9
1
作者
赵康
查志华
李贺
吴杰
机构
石河子大学机械电气工程学院
农业农村部西北农业装备重点实验室
绿洲特色经济作物生产机械化教育部工程研究中心
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第18期290-298,共9页
基金
国家自然科学基金项目(31560476)
新疆维吾尔自治区研究生科研创新项目(XJ2020G080)。
文摘
为实现苹果早期霉心病较高精度的检测,该研究采用对称极坐标法(Symmetrized Dot Pattern,SDP)将苹果声振信号变换为雪花图,然后采用AlexNet、VGG16和ResNet50卷积神经网络以迁移学习方式深度挖掘SDP雪花图像的特征信息,将其输入到支持向量机(Support Vector Machine,SVM)分类器,对霉心程度≤7%的苹果进行检测。研究结果表明,当时间间隔系数为25和角度放大因子为50°时,健康果与早期霉心果声振信号的SDP图形状特征差异最大,在此条件下获取的SDP图经卷积神经网络AlexNet、VGG16和ResNet50提取特征并构建了不同核函数的SVM霉心果检测模型,在各类SVM模型中,ResNet50-SVM-gaus(高斯核)模型用相对较少的训练时间和参数量可取得训练集霉心果较高分类准确率,经超参数优化训练该模型对健康果和早期霉心果测试集不平衡样本(10∶1)的总体分类准确率达到96.97%,平均查准率、平均查全率、平均加权调和均值、Kappa系数和马修斯相关系数值分别为80.19%、90.36%、86.21%,82.54%和82.68%,该模型不仅对多数类的健康果保持较高分类准确率,而且对少数类的早期霉心果也具有较高判别能力。研究结果为声振法应用于果蔬内部病害的早期在线检测系统研发提供了技术支撑。
关键词
无损检测
支持向量机
苹果霉心病
早期检测
声振
法
对称极坐标法
卷积神经网络
Keywords
nondestructive examination
support vector machine
moldy apple core
early detection
vibro-acoustic method
symmetrized dot pattern
convolution neural network
分类号
S661.1 [农业科学—果树学]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进SDP和FasterNet-GCAM的滚动轴承故障诊断
2
作者
陈家芳
唐湛恒
周健
机构
广西中烟工业有限责任公司
出处
《现代制造工程》
北大核心
2025年第7期129-138,41,共11页
文摘
对滚动轴承进行故障诊断关乎设备运行安全及稳定可靠性。使用传统卷积神经网络进行故障诊断,模型运算量过大,且易出现过拟合现象从而导致诊断精度不高,端到端模型存在可信度不高等问题。鉴于此,提出一种基于改进对称极坐标(Symmetrized Dot Pattern,SDP)法和FasterNet-GCAM网络的滚动轴承故障诊断方法。首先,将一维振动信号经过小波阈值降噪处理,再输入经皮尔逊图像相关系数法优化的SDP法生成SDP图像,并通过在FasterNet网络中加入部分卷积(partial convolution)思想,构建成改进的SDP-FasterNet模型进行进一步的特征提取,并完成滚动轴承不同故障的分类诊断。为了验证模型在图像识别过程中决策的可信度,将梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)与FasterNet网络相结合,突出SDP图像与决策相关的重要部分。试验结果表明,所提方法相比于其他方法具有更快的收敛速度和更强的鲁棒性,且诊断识别精度达到了99.20%,并提高了诊断过程中的可解释性及可信度,为故障诊断领域提供了具备良好可行性和鲁棒性的轻量化诊断模型。
关键词
滚动轴承
故障诊断
FasterNet网络
部分卷积
梯度加权类激活映射
对称极坐标法
Keywords
rolling bearing
fault diagnosis
FasterNet network
partial convolution
gradient-weighted class activation mapping
Symmetrized Dot Pattern(SDP)
分类号
TH17 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于声振信号对称极坐标图像的苹果霉心病早期检测
赵康
查志华
李贺
吴杰
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
9
在线阅读
下载PDF
职称材料
2
基于改进SDP和FasterNet-GCAM的滚动轴承故障诊断
陈家芳
唐湛恒
周健
《现代制造工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部