Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized...Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.展开更多
Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DS...Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DSC).The Avrami equation modified by Jeziorny and the Z.S.Mo equation were employed to describe the non-isothermal crystallization kinetics of copolyester samples.The test results showed that the Avrami equation was successful in describing nonisothermal crystallization process of PBAT copolyesters.PBAT copolyester could give birth to secondary crystallization.The crystallization parameter(Zc) increased with an increasing cooling rate and the Avrami exponent(n) was around 2.3.For a given cooling rate,the value of Zc demonstrated a sagging trend with an increase in adipic acid(AA) content.The equation proposed by Z.S.Mo was successful in describing the nonisothermal crystallization kinetics of PBAT copolyesters.展开更多
A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morpho...A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.展开更多
Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the c...Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.展开更多
Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as ...Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.展开更多
Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin...Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin-screw extruder. The nonisothermal crystallization kinetics of binary alloys made of poly(phenylene sulfide) (PPS) and poly(ethyleneco-cyclohexane 1,4-dimethanol terephthalate) (PETG) was studied by the differential scanning calorimetry (DSC) at different cooling rates. The test results revealed that the addition of PETG could shift the crystallization temperature of PPS toward the high-temperature direction. The nonisothermal crystallization kinetic parameters of the PPS/PETG alloy samples were calculated by the methods proposed by Avrami and Mo. Test results demonstrated that the PPS/PETG alloy could give birth to apparent secondary crystallization. The value of Avrami exponent was lower relatively, while Mo's method was more suited to the nonisothermal crystallization process of the PPS/PETG alloy.展开更多
A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic...A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.展开更多
With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysi...With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.展开更多
基金Supported by the Program of Jiangsu Development & Reform Commission(2005)the Industrial-ization Boosting Program of College Scientific Reserach Achievements of the Education Department of Jiangsu Province(JHB06-03)~~
文摘Nano-ZnO particle (nZnOp) reinforced polyethylene glycol (PEG)/polyethylene terephthalate (PET) (nZnOp/PEG/PET) copolymeric composites with different mass fractions and molecular weights of PEG are synthesized via in-situ polymerization. The dispersion of nZnOp in copolymer matrixes and the effects of PEG and nZnOp particles on the crystallization behavior of the composites are studied by TEM, differential scanning calorimetry(DSC), XRD and Fourier thansform infrared spectroscopy (FTIR ). The results reveal that nZnOp particles are dispersed in the matrixes with nano-scale, and the addition of PEG induces more homogeneous dispersion of nZnOp. Simultaneously, these nanoparticles become nucleating centers during the crystallization of the matrixes. PEG segments can improve the flexibility of the PET molecular chain, resulting in the drop of the cold crystallization temperature and the rise of the crystallization rate of the composites. Furthermore, PEG (4 000) with the mass fraction of 10% can promote the crystallization rate of the composites. The mechanical properties show that the nano-particles strengthen and toughen the PET matrix, whereas PEG weakens these improve- ments.
文摘Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DSC).The Avrami equation modified by Jeziorny and the Z.S.Mo equation were employed to describe the non-isothermal crystallization kinetics of copolyester samples.The test results showed that the Avrami equation was successful in describing nonisothermal crystallization process of PBAT copolyesters.PBAT copolyester could give birth to secondary crystallization.The crystallization parameter(Zc) increased with an increasing cooling rate and the Avrami exponent(n) was around 2.3.For a given cooling rate,the value of Zc demonstrated a sagging trend with an increase in adipic acid(AA) content.The equation proposed by Z.S.Mo was successful in describing the nonisothermal crystallization kinetics of PBAT copolyesters.
文摘A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.
基金the financial support from the Beijing University of Chemical Technologythe Key Laboratory of Advanced Chemical Engineering and Technology, Beijing Institute of Petrochemical Technology, for the analysis of samples
文摘Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.
文摘Poly(ethylene terephthalate)(PET)was synthesized by the in-situ polymerization method using layered double hydrotalcite(LDH)as the catalyst,and the thermal and flame retardation properties of PET were investigated as required.As identified by differential scanning calorimetry(DSC)and thermogravimetric(TGA)analysis,the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample.It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification/polycondensation process for PET synthesis.
文摘Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin-screw extruder. The nonisothermal crystallization kinetics of binary alloys made of poly(phenylene sulfide) (PPS) and poly(ethyleneco-cyclohexane 1,4-dimethanol terephthalate) (PETG) was studied by the differential scanning calorimetry (DSC) at different cooling rates. The test results revealed that the addition of PETG could shift the crystallization temperature of PPS toward the high-temperature direction. The nonisothermal crystallization kinetic parameters of the PPS/PETG alloy samples were calculated by the methods proposed by Avrami and Mo. Test results demonstrated that the PPS/PETG alloy could give birth to apparent secondary crystallization. The value of Avrami exponent was lower relatively, while Mo's method was more suited to the nonisothermal crystallization process of the PPS/PETG alloy.
文摘A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.
文摘With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.