针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印...针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。展开更多
在认知无线网络(CRN)中,基于压缩感知的宽带频谱检测仅关注频谱有效性,未考虑到频谱检测过程中节点的能效问题,在提高频谱检测性能的同时造成节点能耗开销过大。为此,提出一种在保障节点能量有效性基础上,进行基于贝叶斯压缩感知(BCS)...在认知无线网络(CRN)中,基于压缩感知的宽带频谱检测仅关注频谱有效性,未考虑到频谱检测过程中节点的能效问题,在提高频谱检测性能的同时造成节点能耗开销过大。为此,提出一种在保障节点能量有效性基础上,进行基于贝叶斯压缩感知(BCS)稀疏重构的CRN宽带频谱检测方法。推导感知能耗解析式,构造节点感知能耗模型,在满足宽带压缩频谱检测概率和BCS重构均方误差(MSE)阈值的约束条件下,通过改变BCS测量矩阵中采样点数实现感知能耗最小化。仿真结果表明,当虚警概率为0.04时,在采样点数较小的情况下,该方法的检测概率高于感知-能耗折衷方法。在重构MSE小于15 d B的条件下,与正交匹配追踪方法的重构能耗相比,基于BCS的节点重构能耗明显下降。展开更多
文摘针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。
文摘在认知无线网络(CRN)中,基于压缩感知的宽带频谱检测仅关注频谱有效性,未考虑到频谱检测过程中节点的能效问题,在提高频谱检测性能的同时造成节点能耗开销过大。为此,提出一种在保障节点能量有效性基础上,进行基于贝叶斯压缩感知(BCS)稀疏重构的CRN宽带频谱检测方法。推导感知能耗解析式,构造节点感知能耗模型,在满足宽带压缩频谱检测概率和BCS重构均方误差(MSE)阈值的约束条件下,通过改变BCS测量矩阵中采样点数实现感知能耗最小化。仿真结果表明,当虚警概率为0.04时,在采样点数较小的情况下,该方法的检测概率高于感知-能耗折衷方法。在重构MSE小于15 d B的条件下,与正交匹配追踪方法的重构能耗相比,基于BCS的节点重构能耗明显下降。