期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
加权多源域对抗迁移学习运动想象脑电识别
1
作者 冯洋 乔晓艳 《传感技术学报》 CAS CSCD 北大核心 2024年第5期825-832,共8页
运动想象脑电信号个体差异大且数据采集成本高,构建小样本、跨被试的运动想象脑电识别模型是脑机接口中需要解决的关键问题。针对小样本跨领域学习,提出一种基于预对齐策略和对抗迁移学习的加权多源域自适应方法,把迁移学习和对抗训练... 运动想象脑电信号个体差异大且数据采集成本高,构建小样本、跨被试的运动想象脑电识别模型是脑机接口中需要解决的关键问题。针对小样本跨领域学习,提出一种基于预对齐策略和对抗迁移学习的加权多源域自适应方法,把迁移学习和对抗训练相结合,将域对抗神经网络扩展到多源域,对各源域进行皮尔逊相关系数加权,实现多个源域和目标域在特征上的加权对齐,并采用预对齐策略提高域间数据分布的一致性。在BCI Competition运动想象数据集上,跨被试的运动想象任务识别正确率达到84.43%,与不迁移方法相比提高了9.17%,相较于域对抗神经网络提高了5.0%。实验结果表明,所提方法能够有效减小不同被试间脑电数据分布以及特征分布差异,实现数据和特征双重对齐,从而提升跨被试运动想象脑电分类性能。 展开更多
关键词 运动想象 对抗迁移学习 加权多源域 跨被试
在线阅读 下载PDF
基于孪生域对抗迁移学习的滚动轴承故障诊断方法 被引量:6
2
作者 胡向东 杨希 《轴承》 北大核心 2023年第7期80-87,共8页
针对多工况约束下滚动轴承故障诊断的难题,提出一种基于孪生域对抗迁移学习的滚动轴承故障诊断方法。首先,基于重采样扩充故障样本,通过降采样平衡正常样本,以防止样本不平衡带来的过拟合问题;然后,利用孪生神经网络对迁移学习特征提取... 针对多工况约束下滚动轴承故障诊断的难题,提出一种基于孪生域对抗迁移学习的滚动轴承故障诊断方法。首先,基于重采样扩充故障样本,通过降采样平衡正常样本,以防止样本不平衡带来的过拟合问题;然后,利用孪生神经网络对迁移学习特征提取的卷积层和池化层进行改进,应对故障样本稀缺问题,缩小不同工况下故障样本分布的差异,提高模型的泛化性;最后,基于公开和实测轴承故障数据集对算法进行全面性能评估。试验结果表明:孪生域对抗迁移学习(SDANN)对CWRU,MFPT和实测轴承数据集的诊断准确率及误差均值分别为(97.26±0.42)%,(95.18±0.28)%和(94.04±0.40)%,相比传统域对抗迁移学习(DANN)方法的平均准确率分别提高6.41%,12.5%和2.54%,误差均值分别降低1.16%,2.66%和0.43%,诊断时间分别加快1.39%,3.77%和9.95%;加入0和-10 dB噪声时,孪生域对抗迁移学习的诊断准确率最高仅降低1.63%;对CWRU与MFPT数据集跨域诊断时,孪生域对抗迁移学习的准确率及误差均值为(91.04±1.05)%;总体而言,孪生域对抗迁移学习对滚动轴承的故障诊断准确率较高且具备良好的抗噪性和迁移诊断效果。 展开更多
关键词 滚动轴承 故障诊断 对抗迁移学习 孪生神经网络
在线阅读 下载PDF
面向滚动轴承故障诊断的改进对抗迁移学习算法研究 被引量:12
3
作者 杨健 李立新 +2 位作者 廖晨茜 蔡晋辉 曾九孙 《中国测试》 CAS 北大核心 2021年第9期15-19,40,共6页
为解决故障诊断中标签不足的问题,该文以滚动轴承作为对象提出一种改进的对抗迁移学习模型。该模型通过一维卷积结构提取时间信号特征,能够直接处理时域振动信号,并通过大尺寸卷积核抑制噪声的干扰;在对抗迁移学习的域判别器中采用卷积... 为解决故障诊断中标签不足的问题,该文以滚动轴承作为对象提出一种改进的对抗迁移学习模型。该模型通过一维卷积结构提取时间信号特征,能够直接处理时域振动信号,并通过大尺寸卷积核抑制噪声的干扰;在对抗迁移学习的域判别器中采用卷积结构替换全连接神经网络,以对抗训练的方式减少训练数据和测试数据间的分布差异,以提高故障诊断精度。将改进后的模型应用于两个滚动轴承故障诊断案例中,通过添加不同信噪比的噪声信号验证提出的模型具有良好的抗干扰能力,同时以故障分类准确率作为指标,验证该模型具有更高的诊断精度和鲁棒性。 展开更多
关键词 对抗迁移学习 故障诊断 一维卷积结构 域判别器
在线阅读 下载PDF
无监督对抗迁移学习轴承故障诊断 被引量:3
4
作者 袁海飞 尹洪申 俞啸 《组合机床与自动化加工技术》 北大核心 2022年第4期83-87,共5页
针对轴承故障诊断中数据标签获取困难、变工况诊断准确率低下、模型诊断泛化能力弱等问题,提出了一种无监督对抗迁移学习轴承故障诊断的方法(MSWDCNN-DA)。首先,将源域与目标域的振动信号经过一层大卷积核,提取轴承故障的短时特征;其次... 针对轴承故障诊断中数据标签获取困难、变工况诊断准确率低下、模型诊断泛化能力弱等问题,提出了一种无监督对抗迁移学习轴承故障诊断的方法(MSWDCNN-DA)。首先,将源域与目标域的振动信号经过一层大卷积核,提取轴承故障的短时特征;其次,根据不同卷积核获取的感受野不同,通过两个3×1、5×1的卷积核更加全面地获取不同层次的信号特征;然后,通过域对抗迁移模块,更好地对齐源域和目标数据之间的分布;最后,进行故障分类。通过在某大学轴承数据集中的实验,证明该模型在不同工况的数据集中都有较高的诊断准确率,表现出模型良好的泛化能力。 展开更多
关键词 故障诊断 对抗迁移学习 无监督 变工况
在线阅读 下载PDF
基于改进对抗迁移学习的滚动轴承故障诊断研究 被引量:3
5
作者 杨健 廖晨茜 +1 位作者 蔡晋辉 曾九孙 《中国测试》 CAS 北大核心 2022年第5期96-101,共6页
为解决故障诊断中标签不足的问题,该文以滚动轴承作为对象提出一种改进的对抗迁移学习模型。该模型通过一维卷积结构提取时间信号特征,能够直接处理时域振动信号,并通过大尺寸卷积核抑制噪声的干扰;在对抗迁移学习的域判别器中采用卷积... 为解决故障诊断中标签不足的问题,该文以滚动轴承作为对象提出一种改进的对抗迁移学习模型。该模型通过一维卷积结构提取时间信号特征,能够直接处理时域振动信号,并通过大尺寸卷积核抑制噪声的干扰;在对抗迁移学习的域判别器中采用卷积结构替换全连接神经网络,以对抗训练的方式减少训练数据和测试数据间的分布差异,以提高故障诊断精度。将改进后的模型应用于两个滚动轴承故障诊断案例中,通过添加不同信噪比的噪声信号验证提出的模型具有良好的抗干扰能力,同时以故障分类正确率作为指标,验证该模型具有更高的诊断精度和鲁棒性。 展开更多
关键词 对抗迁移学习 故障诊断 一维卷积结构 域判别器
在线阅读 下载PDF
基于对抗式迁移学习的含柔性高压直流输电的风电系统次同步振荡源定位 被引量:28
6
作者 陈剑 杜文娟 王海风 《电工技术学报》 EI CSCD 北大核心 2021年第22期4703-4715,共13页
风电场经柔性高压直流输电(VSC-HVDC)接入交流系统会产生次同步振荡(SSO),定位风电场SSO源并及时采取针对性抑制措施是迫切需要解决的问题。该文通过建立风电场经VSC-HVDC并网电力系统线性化模型,分析风电场因发生交互而诱发SSO的机理,... 风电场经柔性高压直流输电(VSC-HVDC)接入交流系统会产生次同步振荡(SSO),定位风电场SSO源并及时采取针对性抑制措施是迫切需要解决的问题。该文通过建立风电场经VSC-HVDC并网电力系统线性化模型,分析风电场因发生交互而诱发SSO的机理,提出基于对抗式迁移学习的风电场SSO源定位方法。该方法通过对仿真系统与实际系统的振荡特征进行对抗学习,缩小了仿真系统与实际系统的域差异,实现仿真系统离线建立的定位模型能够迁移到实际系统中进而对风电场次同步振荡源进行在线定位。通过设计多风电场经VSC-HVDC并网电力系统应用案例,验证分析了所提方法在不同系统中均具有较高的定位精度。这对电网调度运行基于广域测量系统识别振荡源或提供振荡抑制策略具有重要参考价值。 展开更多
关键词 对抗迁移学习 次同步振荡(SSO) 柔性高压直流输电(VSC-HVDC) 振荡源定位
在线阅读 下载PDF
基于域对抗迁移卷积神经网络的小样本GIS绝缘缺陷智能诊断方法 被引量:32
7
作者 王艳新 闫静 +2 位作者 王建华 耿英三 刘志远 《电工技术学报》 EI CSCD 北大核心 2022年第9期2150-2160,共11页
近年来,数据驱动的人工智能模型在气体绝缘组合电器(GIS)绝缘缺陷诊断上取得了一定突破。然而,这些以海量实验数据构建的模型难以部署到现场复杂工况和小样本条件下,导致现有诊断方法现场应用困难。为了解决现场制约传统诊断方法应用的... 近年来,数据驱动的人工智能模型在气体绝缘组合电器(GIS)绝缘缺陷诊断上取得了一定突破。然而,这些以海量实验数据构建的模型难以部署到现场复杂工况和小样本条件下,导致现有诊断方法现场应用困难。为了解决现场制约传统诊断方法应用的数据匮乏难题和现有诊断模型现场应用困难的问题,该文提出了一种新颖的域对抗迁移卷积神经网络用于小样本下的GIS绝缘缺陷智能诊断。首先,以自动寻优构建的卷积神经网络从缺陷样本中学习可迁移绝缘缺陷表征特征,自动寻优构建方法在减少网络构建过程人为干预的同时,有效提升了网络精度等多方面性能。然后,引入域对抗迁移学习,实现海量数据(源域)下训练模型到复杂工况和小样本(目标域)下的迁移,以提升诊断准确率。通过对抗训练方法学习类边界表征特征和域空间表征特征,实现了诊断知识的迁移。在域对抗训练中引入两个领域分类器来进行决策边界域空间的对齐,获得了更合适的特征匹配。在实验室和现场实验验证中,所提方法在目标域下分别达到了99.35%和90.35%的诊断准确率。结果表明,该方法可以有效学习可迁移特征,实现小样本GIS绝缘缺陷的高精度、鲁棒性诊断。 展开更多
关键词 气体绝缘组合电器 对抗迁移学习 卷积神经网络 小样本 智能诊断
在线阅读 下载PDF
命名实体识别的迁移学习研究综述 被引量:18
8
作者 李猛 李艳玲 林民 《计算机科学与探索》 CSCD 北大核心 2021年第2期206-218,共13页
命名实体识别(NER)是自然语言处理的核心应用任务之一。传统和深度命名实体识别方法严重依赖于大量具有相同分布的标注训练数据,模型可移植性差。然而在实际应用中数据往往都是小数据、个性化数据,收集足够的训练数据是非常困难的。在... 命名实体识别(NER)是自然语言处理的核心应用任务之一。传统和深度命名实体识别方法严重依赖于大量具有相同分布的标注训练数据,模型可移植性差。然而在实际应用中数据往往都是小数据、个性化数据,收集足够的训练数据是非常困难的。在命名实体识别中引入迁移学习,利用源域数据和模型完成目标域任务模型构建,提高目标领域的标注数据量和降低目标域模型对标注数据数量的需求,在处理资源匮乏命名实体识别任务上,具有非常好的效果。首先对命名实体识别方法和难点以及迁移学习方法进行概述;然后对近些年应用于命名实体识别的迁移学习方法,包括基于数据迁移学习、基于模型迁移学习和对抗迁移学习,进行全面综述,重点阐述了对抗迁移学习方法;最后进一步思考当前存在的问题并对未来的研究方向进行了展望。 展开更多
关键词 命名实体识别(NER) 迁移学习 对抗迁移学习 深度学习
在线阅读 下载PDF
小样本数据驱动模式下的新建微电网优化调度策略
9
作者 陈实 杨林森 +3 位作者 刘艺洪 罗欢 臧天磊 周步祥 《上海交通大学学报》 北大核心 2025年第6期732-745,I0003,共15页
新建微电网缺少历史运行数据,常规数据驱动的方法难以精确预测可再生能源出力,进而影响调度计划制定的准确性.为此,提出一种适用于新建微电网小样本数据场景的微电网优化调度方法.首先,设计融合域对抗神经网络和长短期记忆网络的改进网... 新建微电网缺少历史运行数据,常规数据驱动的方法难以精确预测可再生能源出力,进而影响调度计划制定的准确性.为此,提出一种适用于新建微电网小样本数据场景的微电网优化调度方法.首先,设计融合域对抗神经网络和长短期记忆网络的改进网络结构,将域对抗思想和梯度反转机制引入迁移学习中,提高模型泛化能力,减小数据的域分布差异,使用出力特征相似电站的丰富运行数据对目标电站出力进行预测,克服小样本条件下出力预测精度不高的问题.进一步,将优化调度模型转化为马尔可夫决策过程,使用双延迟深度确定性策略梯度算法求解.最后,以改进CIGRE 14节点微电网为例验证了所提方法的有效性. 展开更多
关键词 小样本 可再生能源出力 对抗迁移学习 深度强化学习 微电网优化调度
在线阅读 下载PDF
基于中间桥层和相似矩阵的深度对抗迁移故障诊断方法
10
作者 蔡能 武兵 +1 位作者 李翔宇 李聪明 《机电工程》 CAS 北大核心 2023年第5期655-663,672,共10页
采用深度对抗迁移学习算法进行故障诊断时,受到领域中丰富的特征属性的影响,在领域自适应中无法充分学习可用于迁移的共有知识特征,且其在类别水平上忽略了不同类别的对齐程度的差异。针对这一问题,提出了一种基于中间桥层和相似矩阵(MB... 采用深度对抗迁移学习算法进行故障诊断时,受到领域中丰富的特征属性的影响,在领域自适应中无法充分学习可用于迁移的共有知识特征,且其在类别水平上忽略了不同类别的对齐程度的差异。针对这一问题,提出了一种基于中间桥层和相似矩阵(MB-SM)的对抗故障诊断模型,以实现对滚动轴承故障进行跨域诊断识别的目的。首先,利用改进的一维多尺度残差网络对数据的特征进行了提取;然后,引入了中间桥层和相似矩阵,完成了对共有知识特征的充分学习,降低了整体网络的数据传输难度,进一步加强了源域和目标域中同一类别内的聚类和类别之间的分离,提高了故障数据的领域适配能力;最后,采用实验室轴承数据集和美国凯斯西储大学(CWRU)数据集,对基于中间桥层和相似矩阵的模型方法进行了验证。研究结果表明:在自建实验室数据集中,采用基于中间桥层和相似矩阵的方法可以达到90.37%的平均准确率;在美国凯斯西储大学(CWRU)数据集中,也可以达到99.34%的平均准确率。相较于其他迁移学习对比模型,采用该模型方法可以获得更好的诊断性能。 展开更多
关键词 滚动轴承 故障跨域诊断识别 中间桥层和相似矩阵 对抗迁移学习 领域自适应 深度卷积神经网络
在线阅读 下载PDF
领域对抗自适应的短任务负载预测模型 被引量:1
11
作者 刘春红 焦洁 +2 位作者 王敬雄 李为丽 张俊娜 《计算机工程与应用》 CSCD 北大核心 2023年第24期289-297,共9页
负载预测的精度是影响云平台弹性资源管理的主要因素之一。而云平台中存在着大量的短任务负载序列,其历史信息不足和不平滑的特性导致难以选择合适的模型进行精准预测。对此提出了一种领域对抗自适应的短任务负载预测模型。该模型采用... 负载预测的精度是影响云平台弹性资源管理的主要因素之一。而云平台中存在着大量的短任务负载序列,其历史信息不足和不平滑的特性导致难以选择合适的模型进行精准预测。对此提出了一种领域对抗自适应的短任务负载预测模型。该模型采用奇异谱分析(singular spectrum analysis,SSA)对样本进行平滑处理;联合第四版本的Mueen相似度搜索算法(the fourth version of Mueen’s algorithm for similarity search,MASS_V4)与时间特征进行域间相似性计算,获得合适的源域数据来辅助迁移预测;将门控循环单元(gated recurrent unit,GRU)作为基准器构建网络,并利用Y差异定义新的损失函数,通过对抗过程建立出表征能力强的短任务负载预测模型。将所提方法在两个真实的云平台数据集上与其他常用的云负载预测算法对比,均表现出较高的预测精度。 展开更多
关键词 云计算 负载预测 对抗迁移学习 MASS_V4
在线阅读 下载PDF
基于跨语种声学分析的帕金森病检测方法 被引量:1
12
作者 季薇 王传瑜 +2 位作者 吴迪 李云 郑慧芬 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期546-554,共9页
基于语音的帕金森病检测具有非介入式、成本较低和无创等优点。当前公开的帕金森病语音数据集大多来源于单一语种,存在数据容量不够大、受试者母语发音特点差异小等特点。单一语种数据集上训练的帕金森病检测模型在面对跨语种语音数据时... 基于语音的帕金森病检测具有非介入式、成本较低和无创等优点。当前公开的帕金森病语音数据集大多来源于单一语种,存在数据容量不够大、受试者母语发音特点差异小等特点。单一语种数据集上训练的帕金森病检测模型在面对跨语种语音数据时,将出现性能下降。为避免语种差异带来的影响,提升模型在跨语种场景下的检测性能,该文引入对抗迁移学习和特征解耦的思想,提出一种帕金森病跨语种声学分析模型(CLSAM)。首先,将基于多头自注意力机制的Transformer编码块和多层神经网络级联,组成特征提取器模块,用于将从源域和目标域语音中提取的原始Fbank语音特征初步解耦为两个向量,即域不变病理信息表征向量和域信息表征向量;设计了目标任务不一致的双重对抗训练模块,显式地分离域不变病理信息和域信息;最终,提取跨语种语音数据中的域不变病理信息用于帕金森病检测。该文在公开的MaxLittle帕金森病语音数据集以及自采的帕金森病语音数据集上,采用十折交叉验证的方法验证了所提方法的有效性。实验结果表明:与传统机器学习方法以及现有的迁移学习算法相比,所提模型在跨语种场景中的检测准确率、敏感度和F1分数等性能均有明显提升。 展开更多
关键词 跨语种声学分析 帕金森病 对抗迁移学习 特征解耦
在线阅读 下载PDF
基于改进DANN网络的织物缺陷检测 被引量:3
13
作者 殷鹏 景军锋 《现代纺织技术》 2020年第5期57-63,共7页
针对传统的织物缺陷检测算法普适性不足的问题,提出一种基于改进DANN网络的织物缺陷检测算法。分析了对抗迁移学习领域的DANN网络存在的仅考虑源域和目标域间特征相似的情况和对于复杂图片提取到的特征能力较差的问题。提出了改进的方法... 针对传统的织物缺陷检测算法普适性不足的问题,提出一种基于改进DANN网络的织物缺陷检测算法。分析了对抗迁移学习领域的DANN网络存在的仅考虑源域和目标域间特征相似的情况和对于复杂图片提取到的特征能力较差的问题。提出了改进的方法,通过在网络中加入MMD层,可以对提取到的目标域特征赋予不同的权重,并使用ResNet50作为特征提取器。将原DANN网络和改进的MMD-DANN网络在织物缺陷图库中进行了测试并对比了二者的缺陷检测结果。结果表明,改进后网络相比于原网络的准确率平均提高了5%左右,且实时性良好,能满足实际工业需求。 展开更多
关键词 织物缺陷检测 对抗迁移学习 DANN网络 MMD ResNet50
在线阅读 下载PDF
基于SDAE-DATN的联合收割机跨设备故障检测 被引量:1
14
作者 姜伟 许颜贺 +1 位作者 李思樊 卢俊泽 《南方农机》 2023年第8期6-9,共4页
【目的】解决联合收割机单机故障样本收集困难,满足设备故障状态精确检测需求。【方法】课题组提出了一种基于栈式去噪自编码器(stacked denoising auto-encoder,SDAE)与深度对抗迁移网络(deep adversarial transfer network,DATN)的联... 【目的】解决联合收割机单机故障样本收集困难,满足设备故障状态精确检测需求。【方法】课题组提出了一种基于栈式去噪自编码器(stacked denoising auto-encoder,SDAE)与深度对抗迁移网络(deep adversarial transfer network,DATN)的联合收割机跨设备故障检测方法。该方法利用随机噪声分量优化栈式自编码器网络,进而设计融合SDAE的DATN模型,自动捕获不同设备间的域不变特征,实现联合收割机跨设备故障精确检测。【结果】该方法可跨设备实现联合收割机正常运行工况下发动机转子故障、轴承故障与机匣故障的检测,且识别准确率为93.65%,显著高于已有同类模型。课题组所建的SDAEDATN模型能够准确、稳定实现联合收割机跨设备故障检测,对提升农业机械智能化水平具有重要意义。【结论】1)基于随机噪声优化的SDAE模型,可提升编码器鲁棒性,学习更具代表性的状态特征信息。2)融合SDAE的DATN模型,可完成源域和目标域间故障检测模型的自适应优化,有效完成联合收割机跨设备迁移检测任务。 展开更多
关键词 联合收割机 跨设备 故障检测 自编码器 对抗迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部