期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于对抗数据增强的非平衡节点分类算法
1
作者 程凤伟 王文剑 +1 位作者 史颖 张珍珍 《南京大学学报(自然科学版)》 CSCD 北大核心 2024年第5期785-792,共8页
图神经网络(Graph Neural Networks,GNNs)在节点分类任务中取得了显著的成功,然而,目前的GNNs模型倾向于处理具有大量标记数据的多数类,较少关注标记较少的少数类,传统方法常通过过采样来解决这一问题,但可能会导致过拟合.近期的一些研... 图神经网络(Graph Neural Networks,GNNs)在节点分类任务中取得了显著的成功,然而,目前的GNNs模型倾向于处理具有大量标记数据的多数类,较少关注标记较少的少数类,传统方法常通过过采样来解决这一问题,但可能会导致过拟合.近期的一些研究提出了从标记节点合成少数类附加节点的方法,但对于生成的节点是否真正代表相应的少数类,没有明确保证,实际上,不正确的合成节点可能导致算法的泛化能力不足.为了解决这一问题,提出一种基于对抗训练的简单自监督数据增强方法 GraphA2,通过在少数类周围的平滑空间中对梯度最远的地方施加扰动来增强数据,同时采用对比学习来保证增强后的一致性.使用这种方法,不仅增强了数据的多样性,还确保了模型在整个空间中的平滑性和连贯性,能增强其泛化能力.实验表明,提出的方法在各种类别不平衡的数据集上的性能均优于目前最先进的基准模型. 展开更多
关键词 图神经网络 节点分类 非平衡数据 过采样 对抗数据增强
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部