期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于对抗数据增强的非平衡节点分类算法
1
作者
程凤伟
王文剑
+1 位作者
史颖
张珍珍
《南京大学学报(自然科学版)》
CSCD
北大核心
2024年第5期785-792,共8页
图神经网络(Graph Neural Networks,GNNs)在节点分类任务中取得了显著的成功,然而,目前的GNNs模型倾向于处理具有大量标记数据的多数类,较少关注标记较少的少数类,传统方法常通过过采样来解决这一问题,但可能会导致过拟合.近期的一些研...
图神经网络(Graph Neural Networks,GNNs)在节点分类任务中取得了显著的成功,然而,目前的GNNs模型倾向于处理具有大量标记数据的多数类,较少关注标记较少的少数类,传统方法常通过过采样来解决这一问题,但可能会导致过拟合.近期的一些研究提出了从标记节点合成少数类附加节点的方法,但对于生成的节点是否真正代表相应的少数类,没有明确保证,实际上,不正确的合成节点可能导致算法的泛化能力不足.为了解决这一问题,提出一种基于对抗训练的简单自监督数据增强方法 GraphA2,通过在少数类周围的平滑空间中对梯度最远的地方施加扰动来增强数据,同时采用对比学习来保证增强后的一致性.使用这种方法,不仅增强了数据的多样性,还确保了模型在整个空间中的平滑性和连贯性,能增强其泛化能力.实验表明,提出的方法在各种类别不平衡的数据集上的性能均优于目前最先进的基准模型.
展开更多
关键词
图神经网络
节点分类
非平衡
数据
过采样
对抗数据增强
在线阅读
下载PDF
职称材料
题名
基于对抗数据增强的非平衡节点分类算法
1
作者
程凤伟
王文剑
史颖
张珍珍
机构
太原学院计算机科学与技术系
山西大学智能信息处理研究所
山西警察学院网络安全保卫系
太原师范学院计算机科学与技术学院
出处
《南京大学学报(自然科学版)》
CSCD
北大核心
2024年第5期785-792,共8页
基金
国家自然科学基金(U21A20513,62076154)
山西省重点研发计划(202202020101003)
山西省高等学校科技创新项目(2024L382)
文摘
图神经网络(Graph Neural Networks,GNNs)在节点分类任务中取得了显著的成功,然而,目前的GNNs模型倾向于处理具有大量标记数据的多数类,较少关注标记较少的少数类,传统方法常通过过采样来解决这一问题,但可能会导致过拟合.近期的一些研究提出了从标记节点合成少数类附加节点的方法,但对于生成的节点是否真正代表相应的少数类,没有明确保证,实际上,不正确的合成节点可能导致算法的泛化能力不足.为了解决这一问题,提出一种基于对抗训练的简单自监督数据增强方法 GraphA2,通过在少数类周围的平滑空间中对梯度最远的地方施加扰动来增强数据,同时采用对比学习来保证增强后的一致性.使用这种方法,不仅增强了数据的多样性,还确保了模型在整个空间中的平滑性和连贯性,能增强其泛化能力.实验表明,提出的方法在各种类别不平衡的数据集上的性能均优于目前最先进的基准模型.
关键词
图神经网络
节点分类
非平衡
数据
过采样
对抗数据增强
Keywords
graph neural networks
node classification
imbalance data
oversampling
adversarial data augmentation
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于对抗数据增强的非平衡节点分类算法
程凤伟
王文剑
史颖
张珍珍
《南京大学学报(自然科学版)》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部