期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
大语言模型对抗性攻击与防御综述 被引量:4
1
作者 台建玮 杨双宁 +3 位作者 王佳佳 李亚凯 刘奇旭 贾晓启 《计算机研究与发展》 北大核心 2025年第3期563-588,共26页
随着自然语言处理与深度学习技术的快速发展,大语言模型在文本处理、语言理解、图像生成和代码审计等领域中的应用不断深入,成为了当前学术界与工业界共同关注的研究热点.然而,攻击者可以通过对抗性攻击手段引导大语言模型输出错误的、... 随着自然语言处理与深度学习技术的快速发展,大语言模型在文本处理、语言理解、图像生成和代码审计等领域中的应用不断深入,成为了当前学术界与工业界共同关注的研究热点.然而,攻击者可以通过对抗性攻击手段引导大语言模型输出错误的、不合伦理的或虚假的内容,使得大语言模型面临的安全威胁日益严峻.对近年来针对大语言模型的对抗性攻击方法和防御策略进行总结,详细梳理了相关研究的基本原理、实施方法与研究结论.在此基础上,对提示注入攻击、间接提示注入攻击、越狱攻击和后门攻击这4类主流的攻击模式进行了深入的技术探讨.更进一步地,对大语言模型安全的研究现状与未来方向进行了探讨,并展望了大语言模型结合多模态数据分析与集成等技术的应用前景. 展开更多
关键词 大语言模型 对抗性攻击 防御策略 网络空间安全 生成式人工智能
在线阅读 下载PDF
基于车辆轨迹预测对抗性攻击与鲁棒性研究 被引量:1
2
作者 桑海峰 赵梓杉 +1 位作者 王金玉 陈旺兴 《汽车工程》 EI CSCD 北大核心 2024年第3期407-417,437,共12页
针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨... 针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment,DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。 展开更多
关键词 车辆轨迹预测 对抗性攻击 智能驾驶车辆 鲁棒性
在线阅读 下载PDF
融合子图结构的知识图谱嵌入对抗性攻击方法
3
作者 张玉潇 杜晓敬 陈庆锋 《小型微型计算机系统》 CSCD 北大核心 2024年第4期807-814,共8页
知识图谱嵌入(Knowledge Graph Embedding,KGE)技术的高速发展极大提高了人类对于结构化知识的利用效率,该技术也为人工智能的相关应用提供了有利的支撑.但是知识图谱嵌入方法的脆弱性(vulnerability)给知识图谱的应用带来了巨大的挑战... 知识图谱嵌入(Knowledge Graph Embedding,KGE)技术的高速发展极大提高了人类对于结构化知识的利用效率,该技术也为人工智能的相关应用提供了有利的支撑.但是知识图谱嵌入方法的脆弱性(vulnerability)给知识图谱的应用带来了巨大的挑战,近期的一些研究表明,在训练数据中添加微小的扰动便能对训练后的机器学习模型造成巨大的影响,甚至导致错误的预测结果.目前针对可能破坏知识图谱嵌入模型的安全漏洞的研究大多关注嵌入模型的损失函数而忽略图结构信息的作用,因此本文提出了一种融合子图结构深度学习的攻击方法DLOSSAA(Deep Learning of Subgraph Structure Adversarial Attack),对知识图谱嵌入的健壮性进行研究.DLOSSAA方法首先通过对子图结构的深度学习捕获相关子图的结构信息,然后通过修正的余弦相似度(Adjusted Cosine Similarity)筛选出最佳的攻击样本,最后将攻击样本添加到训练数据中进行攻击.实验结果表明,该方法能够有效降低攻击后的知识图谱嵌入模型的性能,攻击效果优于大部分已有的对抗性攻击方法. 展开更多
关键词 知识图谱 知识图谱嵌入 对抗性攻击 子图结构深度学习 余弦相似度
在线阅读 下载PDF
针对深度学习模型的对抗性攻击与防御 被引量:15
4
作者 李明慧 江沛佩 +2 位作者 王骞 沈超 李琦 《计算机研究与发展》 EI CSCD 北大核心 2021年第5期909-926,共18页
以深度学习为主要代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患.研究针对深度学习模型的攻防分析基础理论与关键技术,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署... 以深度学习为主要代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患.研究针对深度学习模型的攻防分析基础理论与关键技术,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署人工智能应用具有重要意义.拟从对抗的角度出发,探讨针对深度学习模型的攻击与防御技术进展和未来挑战.首先介绍了深度学习生命周期不同阶段所面临的安全威胁.然后从对抗性攻击生成机理分析、对抗性攻击生成、对抗攻击的防御策略设计、对抗性攻击与防御框架构建4个方面对现有工作进行系统的总结和归纳.还讨论了现有研究的局限性并提出了针对深度学习模型攻防的基本框架.最后讨论了针对深度学习模型的对抗性攻击与防御未来的研究方向和面临的技术挑战. 展开更多
关键词 人工智能安全 深度学习 对抗性攻击 防御策略 隐私保护
在线阅读 下载PDF
基于参数差异假设的图卷积网络对抗性攻击 被引量:3
5
作者 吴翼腾 刘伟 于溆乔 《电子学报》 EI CAS CSCD 北大核心 2023年第2期330-341,共12页
图神经网络容易受到对抗性攻击安全威胁.现有图神经网络对抗性攻击思想可以概括为构造矛盾的训练数据.矛盾数据假设不能很好地解释图神经网络过拟合训练数据的攻击场景.本文以有效攻击前后图神经网络模型的训练参数应该具有较大差异为... 图神经网络容易受到对抗性攻击安全威胁.现有图神经网络对抗性攻击思想可以概括为构造矛盾的训练数据.矛盾数据假设不能很好地解释图神经网络过拟合训练数据的攻击场景.本文以有效攻击前后图神经网络模型的训练参数应该具有较大差异为基本出发点,以图卷积网络为具体研究对象,建立基于参数差异假设的对抗性攻击模型.将统计诊断的重要结果Cook距离引入对抗性攻击,提出基于Cook距离的参数差异度量方法.采用基于Cook距离梯度的攻击方法,首次得出了攻击梯度的闭式解,并结合梯度下降算法思想和贪心算法思想提出完整的攻击算法.最后设计实验验证了参数差异假设的合理性和基于该假设导出方法的有效性;验证了梯度信息对图场景离散数据的可用性;仿真示例说明了攻击梯度闭式解的正确性;与其他攻击方法对比分析了攻击方法的有效性. 展开更多
关键词 图卷积网络 对抗性攻击 矛盾数据假设 参数差异假设 COOK距离
在线阅读 下载PDF
基于LSTM和CNN的对抗性跨站脚本攻击分析和检测方法研究
6
作者 宋雨濛 龚元丽 任艳 《信息安全研究》 北大核心 2025年第8期761-767,共7页
随着互联网的发展,XSS(cross-site scripting)成为一大网络安全威胁.研究者们将机器学习与深度学习技术应用于XSS检测,并取得了显著成果,但存在无法应对对抗性攻击的问题.为了解决这一问题,提出一种基于强化学习SAC(soft actor-critic)... 随着互联网的发展,XSS(cross-site scripting)成为一大网络安全威胁.研究者们将机器学习与深度学习技术应用于XSS检测,并取得了显著成果,但存在无法应对对抗性攻击的问题.为了解决这一问题,提出一种基于强化学习SAC(soft actor-critic)与LSTM(long short-term memory),CNN(convolutional neural network)相结合的方法.首先训练LSTM-CNN为XSS攻击检测模型,然后利用SAC与LSTM-CNN检测模型生成对抗性攻击样本以模拟攻击者策略,将这些样本用于检测模型的增量训练,以逐步缩小对抗性数据生成空间,提高模型鲁棒性和检测精度.实验结果表明,生成的对抗性数据能在多种检测工具上实现超过90%的成功逃逸率,通过增量训练后,检测模型对对抗性XSS攻击的防御能力得到显著提升,逃逸率持续下降. 展开更多
关键词 跨站脚本攻击 SAC 长短期记忆网络 卷积神经网络 对抗性攻击
在线阅读 下载PDF
一种面向联邦学习对抗攻击的选择性防御策略 被引量:2
7
作者 陈卓 江辉 周杨 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1119-1127,共9页
联邦学习(FL)基于终端本地的学习以及终端与服务器之间持续地模型参数交互完成模型训练,有效地解决了集中式机器学习模型存在的数据泄露和隐私风险。但由于参与联邦学习的多个恶意终端能够在进行本地学习的过程中通过输入微小扰动即可... 联邦学习(FL)基于终端本地的学习以及终端与服务器之间持续地模型参数交互完成模型训练,有效地解决了集中式机器学习模型存在的数据泄露和隐私风险。但由于参与联邦学习的多个恶意终端能够在进行本地学习的过程中通过输入微小扰动即可实现对抗性攻击,并进而导致全局模型输出不正确的结果。该文提出一种有效的联邦防御策略-SelectiveFL,该策略首先建立起一个选择性联邦防御框架,然后通过在终端进行对抗性训练提取攻击特性的基础上,在服务器端对上传的本地模型更新的同时根据攻击特性进行选择性聚合,最终得到多个适应性的防御模型。该文在多个具有代表性的基准数据集上评估了所提出的防御方法。实验结果表明,与已有研究工作相比能够提升模型准确率提高了2%~11%。 展开更多
关键词 联邦学习 对抗性攻击 防御机制 对抗性训练
在线阅读 下载PDF
多模态视觉语言表征学习模型及其对抗样本攻防技术综述
8
作者 曾诚 葛云洁 +1 位作者 赵令辰 王骞 《计算机研究与发展》 北大核心 2025年第9期2208-2232,共25页
随着计算机视觉、自然语言处理与深度学习技术的快速发展,多模态视觉语言表征学习模型在图像描述、文本生成图像、视觉问答等任务中展现出了卓越的性能,已成为当前学术界与工业界共同关注的研究热点.然而,这类模型的多模态特性和复杂性... 随着计算机视觉、自然语言处理与深度学习技术的快速发展,多模态视觉语言表征学习模型在图像描述、文本生成图像、视觉问答等任务中展现出了卓越的性能,已成为当前学术界与工业界共同关注的研究热点.然而,这类模型的多模态特性和复杂性为攻击者提供了更加多样的攻击途径,攻击者可以通过对抗样本引导模型输出错误的、有害的或虚假的内容,使该类模型面临的安全威胁日益严峻.系统地梳理了多模态视觉语言模型的研究现状,同时,对近年来出现的针对该类模型的对抗样本攻击方法及其防御策略进行了分类总结,详细归纳了相关研究的基本原理、实施方法与研究结论.在此基础上,对多模态视觉语言表征学习的安全研究现状与未来方向进行了探讨,并展望了视觉语言表征学习技术在未来结合可解释性技术的应用前景. 展开更多
关键词 表征学习 视觉语言学习 对抗性攻击 对抗性防御 网络空间安全
在线阅读 下载PDF
基于PSO的路牌识别模型黑盒对抗攻击方法 被引量:15
9
作者 陈晋音 陈治清 +2 位作者 郑海斌 沈诗婧 苏蒙蒙 《软件学报》 EI CSCD 北大核心 2020年第9期2785-2801,共17页
随着深度学习在计算机视觉领域的广泛应用,人脸认证、车牌识别、路牌识别等也随之呈现商业化应用趋势.因此,针对深度学习模型的安全性研究至关重要.已有的研究发现:深度学习模型易受精心制作的包含微小扰动的对抗样本攻击,输出完全错误... 随着深度学习在计算机视觉领域的广泛应用,人脸认证、车牌识别、路牌识别等也随之呈现商业化应用趋势.因此,针对深度学习模型的安全性研究至关重要.已有的研究发现:深度学习模型易受精心制作的包含微小扰动的对抗样本攻击,输出完全错误的识别结果.针对深度模型的对抗攻击是致命的,但同时也能帮助研究人员发现模型漏洞,并采取进一步改进措施.基于该思想,针对自动驾驶场景中的基于深度学习的路牌识别模型,提出一种基于粒子群优化的黑盒物理攻击方法(black-box physical attack via PSO,简称BPA-PSO).BPA-PSO在未知模型结构的前提下,不仅可以实现对深度模型的黑盒攻击,还能使得实际物理场景中的路牌识别模型失效.通过在电子空间的数字图像场景、物理空间的实验室及户外路况等场景下的大量实验,验证了所提出的BPA-PSO算法的攻击有效性,可发现模型漏洞,进一步提高深度学习的应用安全性.最后,对BPA-PSO算法存在的问题进行分析,对未来的研究可能面临的挑战进行了展望. 展开更多
关键词 自动驾驶 对抗性攻击 路牌识别 黑盒物理攻击 粒子群优化
在线阅读 下载PDF
基于集成学习的恶意代码动态检测方法 被引量:1
10
作者 刘强 王坚 +1 位作者 王亚男 王珊 《信息网络安全》 北大核心 2025年第1期159-172,共14页
在当前网络环境中,不断升级的恶意代码变种为网络安全带来了巨大挑战。现有的人工智能模型虽然在恶意代码检测方面成效明显,但仍存在两个不可忽视的缺点。一是泛化能力较差,虽然在训练数据上表现优异,但受概念漂移现象的影响,在实际测... 在当前网络环境中,不断升级的恶意代码变种为网络安全带来了巨大挑战。现有的人工智能模型虽然在恶意代码检测方面成效明显,但仍存在两个不可忽视的缺点。一是泛化能力较差,虽然在训练数据上表现优异,但受概念漂移现象的影响,在实际测试中性能不够理想;二是鲁棒性不佳,容易受到对抗样本的攻击。为解决上述问题,文章提出一种基于集成学习的恶意代码动态检测方法,根据API序列的不同特征,分别构建统计特征分析模块、语义特征分析模块和结构特征分析模块,各模块针对性地进行恶意代码检测,最后融合各模块分析结果,得出最终检测结论。在Speakeasy数据集上的实验结果表明,与现有研究方法相比,该方法各项性能指标具有明显优势,同时具有较好的鲁棒性,能够有效抵抗针对API序列的两种对抗攻击。 展开更多
关键词 恶意代码检测 n-gram算法 Transformer编码器 图神经网络 对抗性攻击
在线阅读 下载PDF
CasKDNet:基于改进DenseNet的恶意代码分类方法
11
作者 刘强 王坚 +1 位作者 路艳丽 王艺菲 《空军工程大学学报》 北大核心 2025年第4期110-119,共10页
针对现有恶意代码可视化分类模型在精度和鲁棒性方面的不足,提出一种基于改进DenseNet的恶意代码可视化分类方法CasKDNet,通过3项关键技术实现精度和鲁棒性的提升。首先,构建级联分类器结构,增强纹理相似家族的特征区分能力;其次,采用KA... 针对现有恶意代码可视化分类模型在精度和鲁棒性方面的不足,提出一种基于改进DenseNet的恶意代码可视化分类方法CasKDNet,通过3项关键技术实现精度和鲁棒性的提升。首先,构建级联分类器结构,增强纹理相似家族的特征区分能力;其次,采用KAN结构替代DenseNet网络中的多层感知机,优化特征提取过程的非线性表达能力,提升模型整体精度;最后,基于FFM图像修复算法对训练集进行数据增强,提高模型鲁棒性。在恶意代码数据集Malimg上的实验结果显示,CasKDNet模型取得99.69%的分类准确率,与现有研究方法相比具有明显性能优势。此外,在白盒攻击背景下,FGSM和I-FGSM算法对CasKDNet的攻击成功率仅为12.7%和37.5%,进一步证实了模型在防范对抗性攻击方面的有效性。 展开更多
关键词 恶意代码 级联分类器 KAN FFM算法 对抗性攻击
在线阅读 下载PDF
基于改进投影梯度下降算法的图卷积网络投毒攻击 被引量:5
12
作者 金柯君 于洪涛 +2 位作者 吴翼腾 李邵梅 操晓春 《计算机工程》 CAS CSCD 北大核心 2022年第10期176-183,共8页
图神经网络在面对节点分类、链路预测、社区检测等与图数据处理相关的任务时,容易受到对抗性攻击的安全威胁。基于梯度的攻击方法具有有效性和高效性,被广泛应用于图神经网络对抗性攻击,高效利用攻击梯度信息与求取离散条件下的攻击梯... 图神经网络在面对节点分类、链路预测、社区检测等与图数据处理相关的任务时,容易受到对抗性攻击的安全威胁。基于梯度的攻击方法具有有效性和高效性,被广泛应用于图神经网络对抗性攻击,高效利用攻击梯度信息与求取离散条件下的攻击梯度是攻击离散图数据的关键。提出基于改进投影梯度下降算法的投毒攻击方法。将模型训练参数看作与扰动相关的函数,而非固定的常数,在模型的对抗训练中考虑了扰动矩阵的影响,同时在更新攻击样本时研究模型对抗训练的作用,实现数据投毒与对抗训练两个阶段的结合。采用投影梯度下降算法对变量实施扰动,并将其转化为二进制,以高效利用攻击梯度信息,从而解决贪婪算法中时间开销随扰动比例线性增加的问题。实验结果表明,当扰动比例为5%时,相比Random、DICE、Min-max攻击方法,在Citeseer、Cora、Cora_ml和Polblogs数据集上图卷积网络模型被该方法攻击后的分类准确率分别平均降低3.27%、3.06%、3.54%、9.07%,在时间开销和攻击效果之间实现了最佳平衡。 展开更多
关键词 图卷积网络 对抗性攻击 投毒攻击 投影梯度下降 对抗训练
在线阅读 下载PDF
基于多损失混合对抗函数和启发式投影算法的逼真医学图像增强方法 被引量:1
13
作者 王见 成楚凡 陈芳 《数据采集与处理》 CSCD 北大核心 2023年第5期1104-1111,共8页
早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速度。然而,DNN在医学领域的应用受到有限样本和不可察觉的噪声扰动的影响... 早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速度。然而,DNN在医学领域的应用受到有限样本和不可察觉的噪声扰动的影响。本文提出了一种多损失混合对抗方法来搜索含有可能欺骗网络的有效对抗样本,将这些对抗样本添加到训练数据中,以提高网络对意外噪声扰动的稳健性和泛化能力。特别是,本文方法不仅包含了风格、原图和细节损失在内的多损失功能从而将医学对抗样本制作成逼真的样式,而且使用启发式投影算法产生具有强聚集性和干扰性的噪声。这些样本被证明具有较强的抗去噪能力和攻击迁移性。在新冠肺炎数据集上的测试结果表明,基于该算法的对抗攻击增强后的网络诊断正确率提高了4.75%。因此,基于多损失混合和启发式投影算法的对抗攻击的增强网络能够提高模型的建模能力,并具有抗噪声扰动的能力。 展开更多
关键词 医学图像增强 对抗性攻击 多损失混合 启发式投影法 攻击迁移性
在线阅读 下载PDF
拟双曲动量梯度的对抗深度强化学习研究 被引量:1
14
作者 马志豪 朱响斌 《计算机工程与应用》 CSCD 北大核心 2021年第24期90-99,共10页
在深度强化学习(Deep Reinforcement Learning,DRL)中,智能体(agent)通过观察通道来观察环境状态。该观察可能包含对抗性攻击的干扰,也即对抗样本,使智能体选择了错误动作。生成对抗样本常用方法是采用随机梯度下降方法。提出使用拟双... 在深度强化学习(Deep Reinforcement Learning,DRL)中,智能体(agent)通过观察通道来观察环境状态。该观察可能包含对抗性攻击的干扰,也即对抗样本,使智能体选择了错误动作。生成对抗样本常用方法是采用随机梯度下降方法。提出使用拟双曲动量梯度算法(QHM)来生成对抗干扰,该方法能够充分利用以前的梯度动量来修正梯度下降方向,因而比采用随机梯度下降方法(SGD)在生成对抗样本上具有更高效率。同时借助这种攻击方法在鲁棒控制框架内训练了DRL鲁棒性。实验效果表明基于QHM训练方法的DRL在进行对抗性训练后,面对攻击和环境参数变化时的鲁棒性显著提高。 展开更多
关键词 深度强化学习 对抗性攻击 拟双曲动量梯度 损失函数
在线阅读 下载PDF
基于随机量子层的变分量子卷积神经网络鲁棒性研究 被引量:1
15
作者 戚晗 王敬童 +1 位作者 ABDULLAH Gani 拱长青 《信息网络安全》 CSCD 北大核心 2024年第3期363-373,共11页
近年来,量子机器学习被证明与经典机器学习一样会被一个精心设计的微小扰动干扰从而造成识别准确率严重下降。目前增加模型对抗鲁棒性的方法主要有模型优化、数据优化和对抗训练。文章从模型优化角度出发,提出了一种新的方法,旨在通过... 近年来,量子机器学习被证明与经典机器学习一样会被一个精心设计的微小扰动干扰从而造成识别准确率严重下降。目前增加模型对抗鲁棒性的方法主要有模型优化、数据优化和对抗训练。文章从模型优化角度出发,提出了一种新的方法,旨在通过将随机量子层与变分量子神经网络连接组成新的量子全连接层,与量子卷积层和量子池化层组成变分量子卷积神经网络(Variational Quantum Convolutional Neural Networks,VQCNN),来增强模型的对抗鲁棒性。文章在KDD CUP99数据集上对基于VQCNN的量子分类器进行了验证。实验结果表明,在快速梯度符号法(Fast Gradient Sign Method,FGSM)、零阶优化法(Zeroth-Order Optimization,ZOO)以及基于遗传算法的生成对抗样本的攻击下,文章提出的VQCNN模型准确率下降值分别为11.18%、15.21%和33.64%,与其它4种模型相比准确率下降值最小。证明该模型在对抗性攻击下具有更高的稳定性,其对抗鲁棒性更优秀。同时在面对基于梯度的攻击方法(FGSM和ZOO)时的准确率下降值更小,证明文章提出的VQCNN模型在面对此类攻击时更有效。 展开更多
关键词 随机量子电路 量子机器学习 对抗性攻击 变分量子线路
在线阅读 下载PDF
改进的基于奇异值分解的图卷积网络防御方法 被引量:2
16
作者 金柯君 于洪涛 +3 位作者 吴翼腾 李邵梅 张建朋 郑洪浩 《计算机应用》 CSCD 北大核心 2023年第5期1511-1517,共7页
图神经网络(GNN)容易受到对抗性攻击而导致性能下降,影响节点分类、链路预测和社区检测等下游任务,因此GNN的防御方法具有重要研究价值。针对GNN在面对对抗性攻击时鲁棒性差的问题,以图卷积网络(GCN)为模型,提出一种改进的基于奇异值分... 图神经网络(GNN)容易受到对抗性攻击而导致性能下降,影响节点分类、链路预测和社区检测等下游任务,因此GNN的防御方法具有重要研究价值。针对GNN在面对对抗性攻击时鲁棒性差的问题,以图卷积网络(GCN)为模型,提出一种改进的基于奇异值分解(SVD)的投毒攻击防御方法ISVDatt。在投毒攻击场景下,该方法可对扰动图进行净化处理。GCN遭受投毒攻击后,首先筛选并删除特征差异较大的连边使图保持特征光滑性;然后进行SVD和低秩近似操作使扰动图保持低秩性,并完成对它的净化处理;最后将净化后的扰动图用于GCN模型训练,从而实现对投毒攻击的有效防御。在开源的Citeseer、Cora和Pubmed数据集上针对Metattack和DICE(Delete Internally,Connect Externally)攻击进行实验,并与基于SVD、Pro_GNN和鲁棒图卷积网络(RGCN)的防御方法进行了对比,结果显示ISVDatt的防御效果相对较优,虽然分类准确率比Pro_GNN低,但复杂度低,时间开销可以忽略不计。实验结果表明ISVDatt能有效抵御投毒攻击,兼顾算法的复杂度和通用性,具有较高的实用价值。 展开更多
关键词 图神经网络 图卷积网络 对抗性攻击 投毒攻击 对抗性防御 奇异值分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部