为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模...为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。展开更多
针对无人机(UAV)空战环境信息复杂、对抗性强所导致的敌机机动策略难以预测,以及作战胜率不高的问题,设计了一种引导Minimax-DDQN(Minimax-Double Deep Q-Network)算法。首先,在Minimax决策方法的基础上提出了一种引导式策略探索机制;然...针对无人机(UAV)空战环境信息复杂、对抗性强所导致的敌机机动策略难以预测,以及作战胜率不高的问题,设计了一种引导Minimax-DDQN(Minimax-Double Deep Q-Network)算法。首先,在Minimax决策方法的基础上提出了一种引导式策略探索机制;然后,结合引导Minimax策略,以提升Q网络更新效率为出发点设计了一种DDQN(Double Deep Q-Network)算法;最后,提出进阶式三阶段的网络训练方法,通过不同决策模型间的对抗训练,获取更为优化的决策模型。实验结果表明,相较于Minimax-DQN(Minimax-DQN)、Minimax-DDQN等算法,所提算法追击直线目标的成功率提升了14%~60%,并且与DDQN算法的对抗胜率不低于60%。可见,与DDQN、Minimax-DDQN等算法相比,所提算法在高对抗的作战环境中具有更强的决策能力,适应性更好。展开更多
文摘为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。
文摘针对无人机(UAV)空战环境信息复杂、对抗性强所导致的敌机机动策略难以预测,以及作战胜率不高的问题,设计了一种引导Minimax-DDQN(Minimax-Double Deep Q-Network)算法。首先,在Minimax决策方法的基础上提出了一种引导式策略探索机制;然后,结合引导Minimax策略,以提升Q网络更新效率为出发点设计了一种DDQN(Double Deep Q-Network)算法;最后,提出进阶式三阶段的网络训练方法,通过不同决策模型间的对抗训练,获取更为优化的决策模型。实验结果表明,相较于Minimax-DQN(Minimax-DQN)、Minimax-DDQN等算法,所提算法追击直线目标的成功率提升了14%~60%,并且与DDQN算法的对抗胜率不低于60%。可见,与DDQN、Minimax-DDQN等算法相比,所提算法在高对抗的作战环境中具有更强的决策能力,适应性更好。