采用喷雾干燥法和沉淀法,制备了表面修饰TiO2(B)(2wt%、4wt%、6wt%和8wt%)的富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)结构测试分析结果表明,修饰T...采用喷雾干燥法和沉淀法,制备了表面修饰TiO2(B)(2wt%、4wt%、6wt%和8wt%)的富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)结构测试分析结果表明,修饰TiO2(B)后样品的体相结构仍然保持初始样品的层状结构,仅氧化物颗粒表面附着有少量TiO2(B)纳米晶。示差扫描量热测试(DSC)表明,与初始样品比较,修饰TiO2(B)后样品的热稳定性得到明显改善。在2.0~4.8 V范围内进行恒流电化学性能测试。研究显示,在0.1C(1C=300 m A/g)倍率下,修饰4wt%TiO2(B)样品的首次放电比容量可达296.4 m Ah/g,首次库伦效率则由初始样品的77.7%提升到修饰TiO2(B)后样品的84.3%,100周循环后电极容量保持率由初始样品的69.5%提升到修饰TiO2(B)后样品的80.2%。即使在阶梯倍率的2C倍率下,修饰4wt%TiO2(B)的样品仍具有较高的电化学容量(166.5 m Ah/g)。以上研究结果表明,表面修饰TiO2(B)纳米晶可以显著改善富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2的热稳定性和电化学性能。展开更多
应用共沉淀结合固相烧结合成了富锂层状氧化物(Li-rich layered oxide,LLO)Li1.2Ni0.13Co0.13Mn0.54O2.对制备的富锂材料用氧化石墨烯(Graphene Oxide,GO)包覆后,再经300oC空气中煅烧,制备了石墨烯(Graphene,Gra)卷绕包覆的复合材料(LLO...应用共沉淀结合固相烧结合成了富锂层状氧化物(Li-rich layered oxide,LLO)Li1.2Ni0.13Co0.13Mn0.54O2.对制备的富锂材料用氧化石墨烯(Graphene Oxide,GO)包覆后,再经300oC空气中煅烧,制备了石墨烯(Graphene,Gra)卷绕包覆的复合材料(LLO/Gra).使用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)及电化学方法表征所得样品.结果表明,富锂层状氧化物均匀地卷绕在石墨烯中.与原始富锂材料相比,石墨烯包覆后的复合材料表现出更加优异的电化学性能.尤其是石墨烯卷绕可以改善富锂材料的导电性,提高材料的放电倍率性能,在2.0至4.8 V电压范围内,0.1C(20 m A·g-1)电流充放电下,容量达270 m Ah·g-1,1C倍率下复合物的放电容量接近200 m Ah·g-1,比原始LLO材料170 m Ah·g-1提高了15%.展开更多
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量...采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。展开更多
采用聚合物热解的方法合成了富锂正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2(RLMO),并对其进行硼磷玻璃(BPG)表面包覆。经过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)实验表明,材料颗粒尺寸在100~200 nm范围,其表面明显具...采用聚合物热解的方法合成了富锂正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2(RLMO),并对其进行硼磷玻璃(BPG)表面包覆。经过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)实验表明,材料颗粒尺寸在100~200 nm范围,其表面明显具有非晶包覆层,且表面包覆不会改变材料的主体结构。在2.0~4.8 V范围内进行恒流充放电测试表明,非晶硼磷玻璃包覆材料(BPG-RLMO)具有更高的首次放电比容量(279.5 m Ah/g,30 m A/g)、高的首次库仑效率(91.3%)和优异的循环稳定性(100次循环后容量保持率为86.4%,30 m A/g)。这些结果表明非晶硼磷玻璃包覆可有效抑制电解液的表面分解和所引起的表面结构破坏,提高了材料的首次库仑效率和循环稳定性,为高性能富锂正极材料的发展提供一种可借鉴途径。展开更多
文摘采用喷雾干燥法和沉淀法,制备了表面修饰TiO2(B)(2wt%、4wt%、6wt%和8wt%)的富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)结构测试分析结果表明,修饰TiO2(B)后样品的体相结构仍然保持初始样品的层状结构,仅氧化物颗粒表面附着有少量TiO2(B)纳米晶。示差扫描量热测试(DSC)表明,与初始样品比较,修饰TiO2(B)后样品的热稳定性得到明显改善。在2.0~4.8 V范围内进行恒流电化学性能测试。研究显示,在0.1C(1C=300 m A/g)倍率下,修饰4wt%TiO2(B)样品的首次放电比容量可达296.4 m Ah/g,首次库伦效率则由初始样品的77.7%提升到修饰TiO2(B)后样品的84.3%,100周循环后电极容量保持率由初始样品的69.5%提升到修饰TiO2(B)后样品的80.2%。即使在阶梯倍率的2C倍率下,修饰4wt%TiO2(B)的样品仍具有较高的电化学容量(166.5 m Ah/g)。以上研究结果表明,表面修饰TiO2(B)纳米晶可以显著改善富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2的热稳定性和电化学性能。
文摘应用共沉淀结合固相烧结合成了富锂层状氧化物(Li-rich layered oxide,LLO)Li1.2Ni0.13Co0.13Mn0.54O2.对制备的富锂材料用氧化石墨烯(Graphene Oxide,GO)包覆后,再经300oC空气中煅烧,制备了石墨烯(Graphene,Gra)卷绕包覆的复合材料(LLO/Gra).使用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)及电化学方法表征所得样品.结果表明,富锂层状氧化物均匀地卷绕在石墨烯中.与原始富锂材料相比,石墨烯包覆后的复合材料表现出更加优异的电化学性能.尤其是石墨烯卷绕可以改善富锂材料的导电性,提高材料的放电倍率性能,在2.0至4.8 V电压范围内,0.1C(20 m A·g-1)电流充放电下,容量达270 m Ah·g-1,1C倍率下复合物的放电容量接近200 m Ah·g-1,比原始LLO材料170 m Ah·g-1提高了15%.
文摘采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。
文摘采用聚合物热解的方法合成了富锂正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2(RLMO),并对其进行硼磷玻璃(BPG)表面包覆。经过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)实验表明,材料颗粒尺寸在100~200 nm范围,其表面明显具有非晶包覆层,且表面包覆不会改变材料的主体结构。在2.0~4.8 V范围内进行恒流充放电测试表明,非晶硼磷玻璃包覆材料(BPG-RLMO)具有更高的首次放电比容量(279.5 m Ah/g,30 m A/g)、高的首次库仑效率(91.3%)和优异的循环稳定性(100次循环后容量保持率为86.4%,30 m A/g)。这些结果表明非晶硼磷玻璃包覆可有效抑制电解液的表面分解和所引起的表面结构破坏,提高了材料的首次库仑效率和循环稳定性,为高性能富锂正极材料的发展提供一种可借鉴途径。