期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进密集连接型网络的光场深度估计 被引量:2
1
作者 苏钰生 王亚飞 李学华 《计算机工程与应用》 CSCD 北大核心 2020年第11期142-148,共7页
针对传统的光场深度估计算法精度低、计算慢的问题,提出了一种改进DenseNet的多输入流密集连接型卷积神经网络进行光场深度估计的方法。该方法采用的密集连接的结构,减少了模型的计算量。对输入图片进行预处理,转化为极平面图EPI Volume... 针对传统的光场深度估计算法精度低、计算慢的问题,提出了一种改进DenseNet的多输入流密集连接型卷积神经网络进行光场深度估计的方法。该方法采用的密集连接的结构,减少了模型的计算量。对输入图片进行预处理,转化为极平面图EPI Volume(Epipolar Plane Image)结构,采用随机灰度化等数据增强方法克服训练数据不足,通过神经网络将EPI特征转化为深度信息。在HCI 4D光场数据集上的对比实验结果表明,该方法在均方误差和不良像素率上都取得了良好结果,并且在执行时间上大幅领先于传统算法。 展开更多
关键词 光场 深度估计 极平面图 卷积神经网络 数据增强 密集连接型网络
在线阅读 下载PDF
基于DenseNet的心电数据自动诊断算法 被引量:15
2
作者 赖杰伟 陈韵岱 +5 位作者 韩宝石 季磊 石亚君 黄志聪 阳维 冯前进 《南方医科大学学报》 CAS CSCD 北大核心 2019年第1期69-75,共7页
目的使用卷积网络训练多导联心电图数据,并将新的心电数据准确地分类,为医生提供可靠的辅助诊断信息。方法先用带通滤波器对数据进行预处理,使用信号分帧的方式调整不同长度的数据处于同样的大小,便于网络的训练测试;同时采用增加样本... 目的使用卷积网络训练多导联心电图数据,并将新的心电数据准确地分类,为医生提供可靠的辅助诊断信息。方法先用带通滤波器对数据进行预处理,使用信号分帧的方式调整不同长度的数据处于同样的大小,便于网络的训练测试;同时采用增加样本的方法扩充数据整体,增加异常样本的检出率;针对不同导联的差异性使用深度可分离卷积更有针对性地提取不同通道的特征。使用基于DenseNet的分类模型对多个标签分别训练二分类器,完成多标签分类任务。结果对数据的正异常识别准确率可以达到80.13%,灵敏度,特异度和F1分别为80.38%,79.91%和79.35%。结论本文提出的模型能快速并有效地对心电数据进行预测,在GPU上单个数据的运行时间约在33.59 ms,实时预测结果能满足应用需求。 展开更多
关键词 心电预处理 信号分帧 深度可分离卷积 密集连接卷积网络
在线阅读 下载PDF
基于DCResNet的SAR图像车辆目标识别 被引量:4
3
作者 王强 曹磊 +2 位作者 史润佳 杨非 蒋忠进 《雷达科学与技术》 北大核心 2021年第4期387-392,402,共7页
合成孔径雷达(SAR)图像自动目标识别中,特征提取和目标分类是两个重要环节。残差网络(ResNet)作为一种较新的卷积神经网络,凭借其对目标特征的自适应学习能力,在SAR图像分类领域表现突出。本文在ResNet基础上,设计出了密集连接型残差网... 合成孔径雷达(SAR)图像自动目标识别中,特征提取和目标分类是两个重要环节。残差网络(ResNet)作为一种较新的卷积神经网络,凭借其对目标特征的自适应学习能力,在SAR图像分类领域表现突出。本文在ResNet基础上,设计出了密集连接型残差网络(DCResNet),用于SAR图像目标识别。DCResNet在残差模块中增加了跳跃性连接的密度,不仅继承了ResNet的易学习的优点,还加强了特征的传播和利用率。除此之外,DCResNet采用平均池化的方式进行下采样,抑制了SAR图像中噪声对识别精度造成的影响。关于SAR图像目标识别的实验结果证明,本文提出的DCResNet与ResNet、AlexNet相比,不仅具有更快的收敛速度和推理速度,而且目标分类的准确率更高。 展开更多
关键词 SAR图像 深度学习 目标识别 残差网络 密集连接残差网络
在线阅读 下载PDF
Wafer bin map inspection based on DenseNet 被引量:2
4
作者 YU Nai-gong XU Qiao +1 位作者 WANG Hong-lu LIN Jia 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2436-2450,共15页
Wafer bin map(WBM)inspection is a critical approach for evaluating the semiconductor manufacturing process.An excellent inspection algorithm can improve the production efficiency and yield.This paper proposes a WBM de... Wafer bin map(WBM)inspection is a critical approach for evaluating the semiconductor manufacturing process.An excellent inspection algorithm can improve the production efficiency and yield.This paper proposes a WBM defect pattern inspection strategy based on the DenseNet deep learning model,the structure and training loss function are improved according to the characteristics of the WBM.In addition,a constrained mean filtering algorithm is proposed to filter the noise grains.In model prediction,an entropy-based Monte Carlo dropout algorithm is employed to quantify the uncertainty of the model decision.The experimental results show that the recognition ability of the improved DenseNet is better than that of traditional algorithms in terms of typical WBM defect patterns.Analyzing the model uncertainty can not only effectively reduce the miss or false detection rate but also help to identify new patterns. 展开更多
关键词 wafer defect inspection convolutional neural network DenseNet model uncertainty
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部