期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
基于空洞空间金字塔池化和多头自注意力的特征提取网络 被引量:4
1
作者 万黎明 张小乾 +1 位作者 刘知贵 李理 《计算机应用》 CSCD 北大核心 2022年第S02期79-85,共7页
针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,... 针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,提高局部特征信息的感受野;其次,将改进的ASPP模型合并到残差网络(ResNet)的每个残差块中,使网络在多个维度上都具有多尺度特征提取能力;最后,将残差网络的底层残差块替换为多头自注意力(MHSA),增强网络特征学习能力,捕获数据和特征内部的相关性。图像分割实验中,与残差网络相比,在肺结节数据集中DICE相似系数(DICE)提升了5.16个百分点,肝癌数据集中DICE提升了5.22个百分点;目标检测实验中,与残差网络相比,平均精度均值(MAP)提升了2.9个百分点。实验结果表明,PPSANet能够有效解决图像处理中多尺度特征提取能力弱和内部信息捕获能力差的问题,在一定程度上提高了图像处理的能力。 展开更多
关键词 深度学习 特征提取 图像分割 目标检测 自注意力 空洞空间金字塔池化
在线阅读 下载PDF
基于空洞空间池化金字塔的自动驾驶图像语义分割方法 被引量:7
2
作者 王大方 刘磊 +3 位作者 曹江 赵刚 赵文硕 唐伟 《汽车工程》 EI CSCD 北大核心 2022年第12期1818-1824,共7页
如果车辆在道路上能精确而快速地理解人和车的语义,就能在很大程度上对障碍躲避、路径规划等做出指导。现有的基于深度学习的语义分割方法存在分割速度和分割精度不能兼得等问题。本文在现有语义分割网络的基础上,通过在特征提取基准网... 如果车辆在道路上能精确而快速地理解人和车的语义,就能在很大程度上对障碍躲避、路径规划等做出指导。现有的基于深度学习的语义分割方法存在分割速度和分割精度不能兼得等问题。本文在现有语义分割网络的基础上,通过在特征提取基准网络后添加空洞空间池化金字塔结构,可以获取图像的多尺度语义信息。实验结果表明,文中提出的A_ASPP_1和A_ASPP_2两个模块能对自动驾驶场景中常见的人和各类车辆图像进行有效的分割。对应的两种改进的网络结构虽然分割速度稍有降低,但其训练结果的平均交并比相比现有双分支网络BiSeNet分别提升了2.1和1.2个百分点。 展开更多
关键词 语义分割 自动驾驶 空洞空间池化金字塔
在线阅读 下载PDF
基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法 被引量:4
3
作者 张善文 许新华 齐国红 《弹箭与制导学报》 北大核心 2023年第5期1-8,共8页
针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模... 针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模块扩大卷积特征图的感受野,提取更充分的目标特征,并采用注意力机制、残差连接和长跳跃连接充分保留卷积层提取的RSI的敏感特征。在公开遥感图像数据库EORSSD上的实验结果表明,所提出的方法能够从复杂多样的RSI中检测多尺度目标,检测精度为96.56%。 展开更多
关键词 遥感图像多目标检测 空洞多尺度卷积 空洞空间金字塔池化 空洞空间金字塔池化U-Net
在线阅读 下载PDF
改进U-Net模型的隧道掌子面图像语义分割研究
4
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
在线阅读 下载PDF
结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测 被引量:26
5
作者 吴海滨 魏喜盈 +3 位作者 刘美红 王爱丽 刘赫 岩堀祐之 《中国光学》 EI CAS CSCD 北大核心 2021年第6期1417-1425,共9页
由于X光安检图像存在背景复杂,重叠遮挡现象严重,危险品摆放方式、形状差异较大等问题,导致检测难度较高。针对上述问题,本文在YOLOv4的基础上,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化(Atrous Space Pyramid Pooling,... 由于X光安检图像存在背景复杂,重叠遮挡现象严重,危险品摆放方式、形状差异较大等问题,导致检测难度较高。针对上述问题,本文在YOLOv4的基础上,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化(Atrous Space Pyramid Pooling,ASPP)模型,以此增大感受野,聚合多尺度上下文信息。然后,通过K-means聚类方法生成更适合X光安检危险品检测的初始候选框。其中,模型训练时采用余弦退火优化学习率,进一步加速模型收敛,提高模型检测精度。实验结果表明,本文提出的ASPP-YOLOv4检测算法在SIXRay数据集上的mAP达到85.23%。该方法能有效减少X光安检图像中危险品的误检率,提高小目标危险品的检测能力。 展开更多
关键词 X光安检图像 YOLOv4 空洞卷积 空间金字塔池化 余弦退火
在线阅读 下载PDF
时空网络特征融合的病理步态识别方法
6
作者 李聪聪 王斌 +1 位作者 李亚南 李一帆 《计算机工程与设计》 北大核心 2025年第7期2109-2116,共8页
针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融... 针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融合步态表征。联合卷积核替换和残差块改进对卷积网络进一步优化。时序网络中引入全局与局部时空特征融合模块,形成对时空特征的更细节表达。融合空间特征和时空特征,减轻Bi LSTM学习空间特征中时间模式的过程中丢失空间特征的影响。所提模型在自建数据集和GAIT-IST数据集上的准确率分别达到了97.69%和94.16%,实验结果表明,该方法较其它方法取得了更优的性能。 展开更多
关键词 病理步态识别 时空网络 特征融合 时空特征 阶梯融合式空洞空间金字塔池化 多尺度特征 全局与局部时空特征融合模块
在线阅读 下载PDF
复杂场景下基于深度学习与多传感器融合的无人机配网巡检智能避障技术 被引量:4
7
作者 廖红兵 况松陵 +3 位作者 李扬帆 黄晓露 王刚 魏洪 《测绘通报》 北大核心 2025年第1期22-28,共7页
在电力配网的巡检过程中,复杂的环境条件,如树木遮挡和随机性障碍物,常常导致无人机在执行任务时遇到悬停、撞机等问题,严重影响巡检效率和安全性。为应对这一挑战,本文提出了一种针对复杂场景下的无人机自动巡检智能避障技术,开发了融... 在电力配网的巡检过程中,复杂的环境条件,如树木遮挡和随机性障碍物,常常导致无人机在执行任务时遇到悬停、撞机等问题,严重影响巡检效率和安全性。为应对这一挑战,本文提出了一种针对复杂场景下的无人机自动巡检智能避障技术,开发了融合激光雷达和机器视觉的环境感知系统,通过利用空洞空间金字塔池化结构增大卷积核的感受野,捕获多尺度信息对障碍物进行实时识别,并利用先进的路径规划算法动态调整无人机的飞行路径,以避开障碍物。仿真测试验证表明,该系统在复杂环境中的避障能力得到显著提高,巡检效率提升了20%以上,且有效降低了事故风险。本文所提出的智能避障技术为电力配网的无人机巡检提供了一种高效、安全的解决方案,具备广泛的应用价值和推广前景。 展开更多
关键词 无人机 空洞空间金字塔池化 避障能力 路径规划
在线阅读 下载PDF
基于MobileNet的轻量化云检测模型
8
作者 叶武剑 谢林峰 +2 位作者 刘怡俊 温晓卓 李扬 《自然资源遥感》 北大核心 2025年第3期95-103,共9页
针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制... 针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制和挤压激励(squeeze-and-excitation,SE)注意力模块来增强通道间的信息交流。通过这种方式,既减少了参数量和计算复杂度,又保持了对重要特征的提取能力。在上采样阶段,使用了RepConv模块和改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP),以提高网络的学习能力和捕捉图像细节与空间信息的能力。实验结果证明,该文模型在参数量和模型复杂度降低的情况下,能够实现较高精度的云检测,具备实用性和可行性。 展开更多
关键词 云检测 MobileNet网络 注意力机制 多尺度特征 空洞空间金字塔池化模块
在线阅读 下载PDF
基于空洞卷积神经网络的毒株胚蛋裂纹分割
9
作者 耿磊 张静 +1 位作者 肖志涛 童军 《天津工业大学学报》 CAS 北大核心 2022年第3期69-75,共7页
针对工厂机械设备的噪声和振动、胚蛋蛋壳表面的污斑和裂纹大小、光源打光方式会对裂纹检测产生严重影响,提出一种基于密集空洞卷积模块(DACM)与空洞空间金字塔池化结构(ASPP)的卷积神经网络(CNN)分割方法分割胚蛋裂纹。采用编码器-解... 针对工厂机械设备的噪声和振动、胚蛋蛋壳表面的污斑和裂纹大小、光源打光方式会对裂纹检测产生严重影响,提出一种基于密集空洞卷积模块(DACM)与空洞空间金字塔池化结构(ASPP)的卷积神经网络(CNN)分割方法分割胚蛋裂纹。采用编码器-解码器网络结构与密集连接的空洞卷积结合,增强空间信息表示并重建不同尺度目标信息;同时,在网络浅层引入ASPP,获取多尺度特征,增强细节信息,提高网络分割性能。结果表明:在自制毒株胚蛋顶部裂纹与侧面裂纹数据集上,该方法的平均交并比(MIoU)分别达到了74.2%与81.3%,具有较强的鲁棒性。 展开更多
关键词 毒株胚蛋裂纹分割 卷积神经网络 编码器-解码器 空洞卷积 空洞空间金字塔池化
在线阅读 下载PDF
基于迭代压缩U型网络的煤颗粒分割与粒度分析方法
10
作者 程德强 张瑞 +4 位作者 谢同喜 刘敬敬 郑丽娟 寇旗旗 江鹤 《煤炭学报》 北大核心 2025年第2期1362-1375,共14页
煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘... 煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘细节起着关键作用,直接影响分割结果的准确性。基于卷积神经网络架构的U型网络过于注重局部信息,忽视了全局信息的重要性,容易导致过分割现象。而基于Transformer的网络利用多头自注意力机制有效地建模了全局信息,但却没有充分利用边缘细节特征,导致煤颗粒漏分割问题。为了解决上述问题,本研究提出了迭代压缩U型网络(Iterative Squeeze UNet,ISUNet)用于煤颗粒粒度分析。ISUNet模型引入了压缩激励空洞空间金字塔池化模块和基于Transformer的多路迭代编码器。压缩激励空洞空间金字塔池化模块通过增强不同尺度特征的通道信息和全局上下文信息,解决了煤粒过分割问题。编码器中的多头自注意力模块将ResNet50的卷积特征作为其中一个输入,通过点乘自注意力机制不断强化重要的边缘细节特征,解决了煤粒漏分割问题。与5种经典图像分割模型和4种目前主流的分割模型相比,ISUNet表现出色。相较于经典的分割模型TransUNet来说,平均交并比提高了6.6%,准确率提高了0.3%,召回率提高了7.0%,相较于目前主流的图像分割大模型Segment Anything来说,平均交并比提高了4.6%,准确率提高了0.2%,召回率提高了4.9%。在煤粒粒度测量方面,准确率达到了97.49%。这些试验结果充分证实了ISUNet在煤粒粒度分析中的有效性和优越性。 展开更多
关键词 煤粒粒度分析 图像分割 基于Transformer的多路迭代编码器 压缩激励空洞空间金字塔池化 U型网络
在线阅读 下载PDF
基于密集连接与特征增强的语义分割算法 被引量:5
11
作者 马素刚 陈期梅 +2 位作者 侯志强 杨小宝 张子贤 《计算机工程》 CAS CSCD 北大核心 2023年第3期263-270,共8页
在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空... 在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空洞卷积之间的联系,增强局部信息之间的语义关联,捕获密集的采样点像素,同时提高对高层特征信息的利用。引入特征金字塔增强模块(FPEM)和特征融合模块(FFM),对主干网络输出的多层特征信息进行处理,增强特征的表达能力,并采用FFM对FPEM输出的不同尺度特征信息进行融合,提高各层特征之间的互补能力,以获得更全面的特征图信息。在此基础上,将S-ASPP和FFM的输出进行拼接和卷积操作,得到最终的分割结果。在PASCAL VOC 2012和Cityscapes数据集上的实验结果表明,该算法的平均交并比分别达到81.13%和73.39%,相较于基准算法DeepLabv3+分别提升了2.3和2.1个百分点,充分利用了骨干网络中的每层特征信息,提升了算法的分割精度,取得了较好的分割效果。 展开更多
关键词 语义分割 DeepLabv3+算法 空洞空间金字塔池化 特征金字塔增强模块 特征融合
在线阅读 下载PDF
A-LinkNet:注意力与空间信息融合的语义分割网络 被引量:4
12
作者 杜敏敏 司马海峰 《液晶与显示》 CAS CSCD 北大核心 2022年第9期1199-1208,共10页
针对道路图像语义分割中上下文信息不足以及空间细节信息易丢失等问题,本文提出一种基于LinkNet模型的实时分割方法。首先,在编码区域构建一种新的注意力机制,捕获道路图像的位置以及通道依赖,增加目标特征的提取能力。然后,在中心区域... 针对道路图像语义分割中上下文信息不足以及空间细节信息易丢失等问题,本文提出一种基于LinkNet模型的实时分割方法。首先,在编码区域构建一种新的注意力机制,捕获道路图像的位置以及通道依赖,增加目标特征的提取能力。然后,在中心区域引入空洞空间金字塔池化模型,在不影响图像分辨率的情况下捕获更加丰富的多尺度特征。在通用数据库上的实验结果表明,所提方法在Cityscapes数据集上MIoU达到了64.78%,与LinkNet相比较,提高了5.01%,同时对于细小目标物体以及边界分割视觉效果有明显的改善,分割准确率获得了较大提升。 展开更多
关键词 语义分割 注意力机制 空洞空间金字塔池化 LinkNet
在线阅读 下载PDF
基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割 被引量:3
13
作者 魏超宇 韩文 +1 位作者 庞程 刘辉军 《江苏农业学报》 CSCD 北大核心 2021年第4期990-997,共8页
由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花... 由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花梨疏果期植株图像的准确分割。在研究中借鉴了编码-解码网络,其中编码网络采用DenseNet对多层特征进行复用和融合,以改善信息传递方式;解码网络使用转置卷积进行上采样,结合跳层连接融合浅层细节信息与深层语义信息;在编码、解码之间加入空洞空间金字塔池化(Atrous spatial pyramid pooling,ASPP)用于提取不同感受野的特征图以融合多尺度特征,聚合上下文信息。结果表明,ASPP有效提高了模型的分割精度,MDNet在测试集上的平均局域重合度(MIoU)为77.97%,分别较SegNet、Deeplabv2和DNet提高了8.10个、5.77个和2.17个百分点,果实、枝干和叶片的像素准确率分别为93.57%、90.31%和95.43%,实现了黄花梨植株果实、枝干和叶片等目标的准确分割。在翠冠梨植株图像的独立测试中,MIoU为70.93%,表明该模型具有较强的泛化能力,对自然环境下果蔬植株图像的分割有一定的参考价值。 展开更多
关键词 黄花梨植株 多尺度特征融合 密集连接网络 图像分割 空洞空间金字塔池化(ASPP) 感受野
在线阅读 下载PDF
面向嵌入式端的轻量级交通信号灯检测算法 被引量:3
14
作者 杨永波 李栋 +2 位作者 房建东 董祥 李毅伟 《计算机工程与应用》 CSCD 北大核心 2024年第13期361-368,共8页
针对现有交通信号灯检测算法计算量和模型大,嵌入式端部署难,且对远距离交通信号灯的检测难度大,漏检率高等问题,设计了一种面向嵌入式端的轻量级交通信号灯检测算法,针对轻量化和实时性要求,采用GhostNet网络Ghost模块和Ghost瓶颈层结... 针对现有交通信号灯检测算法计算量和模型大,嵌入式端部署难,且对远距离交通信号灯的检测难度大,漏检率高等问题,设计了一种面向嵌入式端的轻量级交通信号灯检测算法,针对轻量化和实时性要求,采用GhostNet网络Ghost模块和Ghost瓶颈层结构,减少了模型参数量,提升了检测速度;针对特征相似问题,采用加权双向特征金字塔网络结构,使得算法对目标更敏感;使用密集空洞空间金字塔池化,优化全局上下文信息的提取;针对小目标识别问题,通过多尺度检测的改进,增强对小目标的信息提取;通过知识蒸馏,提升模型学习能力,进而提高检测性能。实验结果表明,该检测算法对交通信号灯的识别精度达到了97.0%,召回率达到了99%,较YOLOv5s算法分别提高了2.7和3个百分点,模型大小减小到8.06 MB,是YOLOv5s的58%,识别速率从51帧每秒提升到56帧每秒,通过在嵌入式端的测试,改进后算法对远距离下的交通信号灯能够实时准确地识别。 展开更多
关键词 目标检测 轻量级 GhostNet 知识蒸馏 密集空洞空间金字塔池化
在线阅读 下载PDF
融合注意力和扩张卷积的遥感影像道路信息提取方法 被引量:2
15
作者 肖振久 郝明 +1 位作者 曲海成 侯佳兴 《遥感信息》 CSCD 北大核心 2024年第1期18-25,共8页
针对高分辨率遥感影像语义分割存在地物边缘分割不连续、道路及背景特征复杂多样导致道路提取分割精度不高的问题,提出了一种融合双通道注意力和扩张卷积的遥感影像道路信息提取语义分割网络(A 2DU-Net)。首先,在特征提取部分引入坐标... 针对高分辨率遥感影像语义分割存在地物边缘分割不连续、道路及背景特征复杂多样导致道路提取分割精度不高的问题,提出了一种融合双通道注意力和扩张卷积的遥感影像道路信息提取语义分割网络(A 2DU-Net)。首先,在特征提取部分引入坐标注意力(coordinate attention,CA)模块,捕捉道路位置、方向和跨通道信息,精确定位道路信息。其次,针对网络对细节特征丢失的敏感问题,在编码器的末端利用不同扩张率的空洞卷积构建多尺度特征融合的空洞空间金字塔池化模块(multi-scale Atrous spatial pyramid pooling module,MASPPM)来获得更大的感受野,提高网络性能。最后,为了避免U-Net中纯跳跃连接在语义上不相似特征的融合,在编码器和解码器的跳跃连接之间增加了双通道注意力机制来实现门控筛选,抑制非目标区域的特征,提高网络的分割精度。实验在公共道路数据集Massachusetts上对网络模型进行测试,OA(准确率)、交并比(IoU)、平均交并比(mIoU)和F1等评价指标分别达到98.07%、64.39%、81.20%和88.67%。与主流方法U-Net和DDUNet进行比较,mIoU分别提升了3.07%、0.22%,IoU分别提升了1.98%、0.52%。实验结果表明,所提出的方法优于所有的比较方法,能够有效提高道路分割的精确度。 展开更多
关键词 语义分割 道路提取 注意力机制 U-Net 空洞空间金字塔池化
在线阅读 下载PDF
基于DeeplabV3+网络的轻量化语义分割算法 被引量:3
16
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 DeeplabV3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(ASPP)
在线阅读 下载PDF
结合残差与双注意力机制的U-Net语音增强方法 被引量:1
17
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
在线阅读 下载PDF
基于改进DeepLabv3+的遥感影像道路提取算法 被引量:2
18
作者 王谦 何朗 +1 位作者 王展青 黄坤 《计算机科学》 CSCD 北大核心 2024年第8期168-175,共8页
道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速... 道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速度慢和容易受背景环境因素干扰而产生漏分割、不连续等问题,提出了一种基于ECANet注意力机制和级联空洞空间金字塔池化模块的轻量化算法CE-DeepLabv3+。首先,将主干特征提取网络更换为轻量级的MobileNetv2,减少参数量,提高模型的执行速度;其次,通过增加空洞空间金字塔池化模块的卷积层进一步扩大感受野,再级联不同特征层来增强语义信息的复用性,从而加强对细节特征的提取能力;再次,加入ECANet注意力机制,抑制背景环境中的干扰因素,聚焦道路信息;最后,采用改进的损失函数进行训练,消除了道路与背景样本不均衡对模型性能产生的影响。实验结果表明,改进算法的性能优良,与原始DeepLabv3+算法相比,在分割效率、分割精度上有较大的提升。 展开更多
关键词 语义分割 遥感影像 道路提取 注意力机制 DeepLabv3+ 级联空洞空间金字塔池化
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 被引量:3
19
作者 胡程喜 谭立新 +1 位作者 王文胤 宋敏 《智慧农业(中英文)》 CSCD 2024年第5期119-127,共9页
[目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一... [目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。[方法]对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network,ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。[结果和讨论]改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。[结论]本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。 展开更多
关键词 轻量化模型 DeepLabV3+ 注意力机制 茶叶嫩芽 ECANet 名优茶 空洞空间卷积池化金字塔
在线阅读 下载PDF
基于稠密块改进LinkNet的高分遥感图像道路提取 被引量:1
20
作者 王增优 张鲜化 +2 位作者 刘荣 陈志高 朱旺煌 《航天返回与遥感》 CSCD 北大核心 2024年第3期107-117,共11页
针对LinkNet网络模型在进行道路图像分割任务时,特征信息易丢失以及缺乏对目标特征的关注度问题,提出了一种基于改进LinkNet残差网络的高分遥感图像道路提取方法。将原本LinkNet模型中编码区的残差块(Res Block)替换为稠密块(Dense Bloc... 针对LinkNet网络模型在进行道路图像分割任务时,特征信息易丢失以及缺乏对目标特征的关注度问题,提出了一种基于改进LinkNet残差网络的高分遥感图像道路提取方法。将原本LinkNet模型中编码区的残差块(Res Block)替换为稠密块(Dense Block),密集连接的方式减少特征信息在传递过程中的损失,并在每个稠密块之后构建卷积注意力单元来提高模型对目标特征的学习能力,最后用空洞空间金字塔池化模块将编码区与解码区进行连接,扩大感受野的同时还能接受多尺度目标特征信息。实验表明,该方法在DeepGlobe数据集上的准确率、平均交并比和F1-score分为82.16%、83.21%和81.65%,均优于同类网络,通过对提取的路网结果对比,该算法对于树木遮蔽处以及建筑物阴影下的路网提取在完整性和准确性上都具有明显提升。 展开更多
关键词 残差网络 道路提取 稠密块 卷积注意力 空洞空间金字塔池化
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部