期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多尺度残差密集注意力网络图像超分辨率重建
被引量:
3
1
作者
倪水平
王仕杰
+1 位作者
李慧芳
李朋坤
《河南理工大学学报(自然科学版)》
CAS
北大核心
2024年第1期140-148,共9页
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention net...
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention network)的单幅图像超分辨率重建算法。首先,使用卷积网络从低分辨率图像中提取浅层特征并将其作为后续网络各级输入;其次,采用各级多尺度残差密集注意力块(multi-scale residual dense attention block)处理前级网络图像特征并从中提取图像高频特征,多尺度残差密集网络善于提取更丰富的图像特征,并融入注意力机制,增强网络对高频区域特征的关注;然后,将网络各级提取不同深度的图像特征进行全局特征融合;最后,融合后的特征经上采样输出重建的超分辨率图像。结果放大因子为4时,网络在SET5,SET14,BSDS100,URBAN100和MANGA109数据集上测试,峰值信噪比分别为31.97,28.58,27.57,25.85,29.79 dB;网络中基本模块分别由多尺度残差密集注意力块、残差块和密集块替换提取特征,以峰值信噪比作为模块性能评估标准,多尺度残差密集注意力块表现更优异。结论该网络结合多尺度残差密集网络能够获取更丰富图像高低频信息,融入注意力机制有效对网络中高频信息进行提取,能重建纹理更清晰的超分辨率图像。
展开更多
关键词
多尺度残差
密集注意力网络
超分辨率重建
注意力
机制
高频区域
在线阅读
下载PDF
职称材料
双注意力密集残差收缩网络的图像去雨算法
2
作者
王震
牛晓伟
《电光与控制》
北大核心
2025年第3期88-93,共6页
针对现有算法对雨纹的清除不彻底并存在背景信息丢失的问题,提出一种双注意力密集残差收缩网络的图像去雨算法。该网络首先通过混合特征补偿模块收集多种尺度信息;在编码阶段使用双注意力密集残差收缩块作为编码器基础编码块,利用软阈...
针对现有算法对雨纹的清除不彻底并存在背景信息丢失的问题,提出一种双注意力密集残差收缩网络的图像去雨算法。该网络首先通过混合特征补偿模块收集多种尺度信息;在编码阶段使用双注意力密集残差收缩块作为编码器基础编码块,利用软阈值网络将收集的特征信息中的无用信息置零并添加空间,利用通道双注意力标注雨纹的位置信息;在解码阶段将前面不同阶段的特征信息进行聚合,通过scSE注意力机制进行空间、通道两方面激励,压缩特征信息传入解码器进行解码,最终输出去雨图像。在公开数据集Rain100H、Rain100L、Rain800和Rain12上进行实验,以Rain100H为例与其他算法相比,峰值信噪比(PSNR)提高了1.07~7.45 dB,结构相似度提高了0.021~0.139。
展开更多
关键词
图像去雨
混合特征补偿
注意力
机制
双
注意力
密集
残差收缩
网络
在线阅读
下载PDF
职称材料
题名
多尺度残差密集注意力网络图像超分辨率重建
被引量:
3
1
作者
倪水平
王仕杰
李慧芳
李朋坤
机构
河南理工大学计算机科学与技术学院
出处
《河南理工大学学报(自然科学版)》
CAS
北大核心
2024年第1期140-148,共9页
基金
国家自然科学基金资助项目(61872126)。
文摘
目的使用单一尺度卷积网络提取低分辨率(low-resolution,LR)图像特征会造成大量图像高频特征丢失,为了获取更多高频特征,重建更清晰的超分辨率图像,方法提出一种基于多尺度残差密集注意力网络(multi-scale residual dense attention network)的单幅图像超分辨率重建算法。首先,使用卷积网络从低分辨率图像中提取浅层特征并将其作为后续网络各级输入;其次,采用各级多尺度残差密集注意力块(multi-scale residual dense attention block)处理前级网络图像特征并从中提取图像高频特征,多尺度残差密集网络善于提取更丰富的图像特征,并融入注意力机制,增强网络对高频区域特征的关注;然后,将网络各级提取不同深度的图像特征进行全局特征融合;最后,融合后的特征经上采样输出重建的超分辨率图像。结果放大因子为4时,网络在SET5,SET14,BSDS100,URBAN100和MANGA109数据集上测试,峰值信噪比分别为31.97,28.58,27.57,25.85,29.79 dB;网络中基本模块分别由多尺度残差密集注意力块、残差块和密集块替换提取特征,以峰值信噪比作为模块性能评估标准,多尺度残差密集注意力块表现更优异。结论该网络结合多尺度残差密集网络能够获取更丰富图像高低频信息,融入注意力机制有效对网络中高频信息进行提取,能重建纹理更清晰的超分辨率图像。
关键词
多尺度残差
密集注意力网络
超分辨率重建
注意力
机制
高频区域
Keywords
multi-scale residual
dense attention network
super-resolution reconstruction
attention mechanism
high frequency region
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
双注意力密集残差收缩网络的图像去雨算法
2
作者
王震
牛晓伟
机构
重庆三峡学院电子与信息工程学院
出处
《电光与控制》
北大核心
2025年第3期88-93,共6页
基金
国家重点研发计划(2021 YFB3901400)。
文摘
针对现有算法对雨纹的清除不彻底并存在背景信息丢失的问题,提出一种双注意力密集残差收缩网络的图像去雨算法。该网络首先通过混合特征补偿模块收集多种尺度信息;在编码阶段使用双注意力密集残差收缩块作为编码器基础编码块,利用软阈值网络将收集的特征信息中的无用信息置零并添加空间,利用通道双注意力标注雨纹的位置信息;在解码阶段将前面不同阶段的特征信息进行聚合,通过scSE注意力机制进行空间、通道两方面激励,压缩特征信息传入解码器进行解码,最终输出去雨图像。在公开数据集Rain100H、Rain100L、Rain800和Rain12上进行实验,以Rain100H为例与其他算法相比,峰值信噪比(PSNR)提高了1.07~7.45 dB,结构相似度提高了0.021~0.139。
关键词
图像去雨
混合特征补偿
注意力
机制
双
注意力
密集
残差收缩
网络
Keywords
image deraining
mixed feature compensation
attention mechanism
dual attention dense residual contraction network
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多尺度残差密集注意力网络图像超分辨率重建
倪水平
王仕杰
李慧芳
李朋坤
《河南理工大学学报(自然科学版)》
CAS
北大核心
2024
3
在线阅读
下载PDF
职称材料
2
双注意力密集残差收缩网络的图像去雨算法
王震
牛晓伟
《电光与控制》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部