期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于密集残差块生成对抗网络的空间目标图像超分辨率重建 被引量:20
1
作者 景海钊 史江林 +2 位作者 邱梦哲 齐勇 朱文骁 《光学精密工程》 EI CAS CSCD 北大核心 2022年第17期2155-2165,共11页
为了获取更高分辨率和清晰度的空间目标光学图像,需对地基自适应光学(Adaptive Optics,AO)成像望远镜校正后的降质图像进行超分辨率重建。针对空间目标AO图像背景单一、分辨率有限且存在运动模糊、湍流模糊以及过曝等特点,提出基于深度... 为了获取更高分辨率和清晰度的空间目标光学图像,需对地基自适应光学(Adaptive Optics,AO)成像望远镜校正后的降质图像进行超分辨率重建。针对空间目标AO图像背景单一、分辨率有限且存在运动模糊、湍流模糊以及过曝等特点,提出基于深度学习的生成对抗网络(Generative Adversarial Networks,GAN)方法来实现空间目标AO图像的超分辨率重建,构建了空间目标AO仿真图像训练集用于神经网络训练,提出了一种基于密集残差块的GAN超分辨率重建方法,通过将传统残差网络改为密集残差块,提高网络深度,将相对平均损失函数引入判别器网络,从而使得判别器更稳健,GAN训练更稳定。实验结果表明:本文提出的方法相较传统插值超分辨率方法PSNR提高11.6%以上,SSIM提高10.3%以上,相较基于深度学习的盲图像超分辨率方法PSNR平均提高6.5%,SSIM平均提高4.9%。该方法有效实现了空间目标AO图像的清晰化重建,降低了重建图像的伪影,丰富了图像细节。 展开更多
关键词 空间目标图像 超分辨率 生成对抗网络 密集残差块
在线阅读 下载PDF
基于残差密集块的激光遥感图像中目标检测方法 被引量:1
2
作者 李雪 刘悦 王青正 《激光杂志》 CAS 北大核心 2024年第8期98-102,共5页
为了提高对目标检测的效果,提出基于残差密集块的激光遥感图像中目标检测方法。首先,设计基于残差密集块的卷积神经网络,在设计ReLU激活函数并完成网络训练后,基于含噪激光遥感图像的初步特征提取结果,利用单个卷积展开卷积映射处理,抽... 为了提高对目标检测的效果,提出基于残差密集块的激光遥感图像中目标检测方法。首先,设计基于残差密集块的卷积神经网络,在设计ReLU激活函数并完成网络训练后,基于含噪激光遥感图像的初步特征提取结果,利用单个卷积展开卷积映射处理,抽取出潜在干净图像。然后,通过聚类处理的方式,得到激光遥感图像中车辆目标的显著图,再利用大律法,通过建立的特征比例关系的方式检测出其中的目标信息。实验结果表明,应用该方法有效滤除激光遥感图像中的噪声,并精准检测出激光遥感图像中的车辆目标。相比于3种传统方法,该方法检测结果均值误差的最小值仅为0.0156,说明该方法有效实现了设计预期。 展开更多
关键词 激光遥感图像 残差密集 卷积神经网络 聚类算法 大律法 目标检测 去噪处理
在线阅读 下载PDF
基于梯度残差密集块和注意力混洗的红外与可见光图像融合
3
作者 袁硕智 刘培培 +2 位作者 张宇晓 徐湖洋 刘思李 《激光杂志》 CAS 北大核心 2024年第7期150-156,共7页
针对当前基于深度学习的红外和可见光图像融合存在提取细粒度细节信息不足、深层特征利用困难的问题,提出了一种基于梯度残差密集块和注意力混洗机制的红外与可见光融合方法。该方法在编码器中加入梯度残差密集块和注意力混洗模块,提升... 针对当前基于深度学习的红外和可见光图像融合存在提取细粒度细节信息不足、深层特征利用困难的问题,提出了一种基于梯度残差密集块和注意力混洗机制的红外与可见光融合方法。该方法在编码器中加入梯度残差密集块和注意力混洗模块,提升自编码器对图像细粒度细节信息和深层全局特征的提取能力并抑制噪声。在与其他方法的对比实验中,本方法在主观评价上具有良好的细节纹理和全局层次,并可以很好地融合红外与可见光源图像的有效特征;在客观评价上,本算法在标准差、峰值信噪比、视觉保真度、基于边缘信息的指标和小波特征互信息五项取得最优值,分别为76.9275、16.7755、0.8767、0.5141、0.4313。 展开更多
关键词 图像融合 深度学习 注意力机制 梯度残差密集
在线阅读 下载PDF
基于密集残差生成对抗网络的红外图像去模糊 被引量:1
4
作者 李立 易诗 +2 位作者 刘茜 程兴豪 王铖 《红外技术》 CSCD 北大核心 2024年第6期663-671,共9页
红外图像拍摄过程中,由于摄像设备抖动或目标快速移动会导致图像出现运动模糊,极大影响了有效信息的提取和识别。针对上述问题,本文在DeblurGAN基础上提出一种基于密集残差生成对抗网络的红外图像去模糊方法。该方法首先采用多尺度卷积... 红外图像拍摄过程中,由于摄像设备抖动或目标快速移动会导致图像出现运动模糊,极大影响了有效信息的提取和识别。针对上述问题,本文在DeblurGAN基础上提出一种基于密集残差生成对抗网络的红外图像去模糊方法。该方法首先采用多尺度卷积核,提取红外图像不同尺度和层次的特征。其次,采用密集残差块(residual-in-residual dense block,RRDB)代替原生成网络中的残差单元,改善恢复红外图像的细节信息。通过本课题组自制的红外图像数据集进行实验,结果表明所提出的方法与DeblurGAN相比PSNR提高3.60 dB,SSIM提高0.09,主观视觉去模糊效果较好,恢复后的红外图像边缘轮廓清晰且细节信息明显。 展开更多
关键词 生成对抗网络 密集残差块 红外图像 去运动模糊
在线阅读 下载PDF
基于残差密集块和自编码网络的红外与可见光图像融合 被引量:12
5
作者 王建中 徐浩楠 +1 位作者 王洪枫 于子博 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第10期1077-1083,共7页
红外与可见光图像融合是复杂环境中获得高质量目标图像的一种有效手段,在目标检测与跟踪、图像增强、遥感、医疗等领域有广泛应用前景.为解决目前基于深度学习的红外与可见光图像融合方法中存在的网络无法充分提取特征、特征信息利用不... 红外与可见光图像融合是复杂环境中获得高质量目标图像的一种有效手段,在目标检测与跟踪、图像增强、遥感、医疗等领域有广泛应用前景.为解决目前基于深度学习的红外与可见光图像融合方法中存在的网络无法充分提取特征、特征信息利用不充分和融合图像清晰度低的问题,本文提出了一种基于残差密集块的端到端自编码图像融合网络结构,利用基于残差密集块的编码器网络将图像分解成背景特征图和细节特征图,然后将两种特征图进行融合,再通过解码器进行重构,还原出最终的融合图像.测试结果表明,本文的方法可以得到清晰度高、目标突出、轮廓明显的融合图像,在SF、AG、CC、SCD、Qabf、SSIM 6个融合质量评估指标上与目前代表性融合方法相比均有不同程度的提升,特别是在融合图像清晰度上优势明显,且对于模糊、遮挡、逆光、烟雾等复杂环境图像有较好的融合效果. 展开更多
关键词 图像融合 深度学习 自编码网络 残差密集
在线阅读 下载PDF
融合残差密集块自注意力机制和生成对抗网络的对抗攻击防御模型 被引量:7
6
作者 赵玉明 顾慎凯 《计算机应用》 CSCD 北大核心 2022年第3期921-929,共9页
神经网络在图像分类任务上表现优异,但它极易受添加微小扰动的对抗样本的影响,输出错误的分类结果;而目前防御方法存在图像特征提取能力不足、对图像关键区域特征关注较少的问题。针对这些问题,提出了一种融合残差密集块(RDB)自注意力... 神经网络在图像分类任务上表现优异,但它极易受添加微小扰动的对抗样本的影响,输出错误的分类结果;而目前防御方法存在图像特征提取能力不足、对图像关键区域特征关注较少的问题。针对这些问题,提出了一种融合残差密集块(RDB)自注意力机制和生成对抗网络(GAN)的攻击防御模型——RD-SA-DefGAN。该模型将GAN和投影梯度下降(PGD)攻击算法相结合,吸收PGD攻击算法生成的对抗样本进入训练样本扩充训练集,辅以条件约束稳定模型的训练过程。该模型添加了残差密集块和自注意力机制,在充分提取特征的同时,增大了关键区域特征对分类任务的贡献度。在CIFAR10、STL10和ImageNet20数据集上的实验结果表明,RD-SA-DefGAN能对对抗攻击实施有效防御,在抵御PGD对抗攻击上优于Adv.Training、Adv-BNN、Rob-GAN等防御方法。相较于结构最近似的RobGAN,在CIFAR10数据集上,RD-SA-DefGAN在扰动阈值为0.015~0.070时,防御成功率提升了5.0~9.1个百分点。 展开更多
关键词 生成对抗网络 对抗攻击 残差密集 自注意力机制 防御模型
在线阅读 下载PDF
结合残差密集块的卷积神经网络图像去噪方法 被引量:9
7
作者 郭恒意 贾振堂 《计算机工程与设计》 北大核心 2020年第7期1998-2003,共6页
为充分提取图像特征,有效去除图像噪声,在对多种图像去噪算法研究的基础上,提出一种结合残差密集块(residual dense block,RDB)的深度卷积神经网络图像去噪方法。利用RDB充分提取前面几个卷积层中的特征,在后续卷积层后添加批量规范化... 为充分提取图像特征,有效去除图像噪声,在对多种图像去噪算法研究的基础上,提出一种结合残差密集块(residual dense block,RDB)的深度卷积神经网络图像去噪方法。利用RDB充分提取前面几个卷积层中的特征,在后续卷积层后添加批量规范化层和线性修正单元以加速训练并提高去噪效果,使用残差学习降低网络输出的拟合难度。实验结果表明,该模型能有效去除图像噪声,简化模型结构,降低网络计算复杂度。 展开更多
关键词 图像去噪 残差密集 卷积神经网络 残差学习 批量规范化
在线阅读 下载PDF
基于DMD的红外与可见光图像融合
8
作者 杨艳春 李毅 +1 位作者 李佳龙 王泽煜 《激光与红外》 北大核心 2025年第8期1305-1313,共9页
针对红外与可见光图像融合算法中出现缺失纹理细节、对比度信息问题,本文提出了一种基于双马尔可夫鉴别器(DMD)的红外与可见光图像融合方法。首先,在生成器的主通道中提取红外与可见光图像的公共信息,同时在辅通道中提取两者的互补信息... 针对红外与可见光图像融合算法中出现缺失纹理细节、对比度信息问题,本文提出了一种基于双马尔可夫鉴别器(DMD)的红外与可见光图像融合方法。首先,在生成器的主通道中提取红外与可见光图像的公共信息,同时在辅通道中提取两者的互补信息,利用梯度残差密集块(GRDB)提取特征的深层次细粒度信息;然后,通过混合注意力机制,获取到更加丰富的细节信息;最后,采用DMD与生成器构建对抗博弈机制,估计红外图像与可见光图像的分布概率,专注于区分输入图像的每一个局部块,从而促使融合图像保留更多的纹理细节信息。实验结果表明,本文方法的融合图像在纹理细节和对比度信息上表现丰富,同时在平均梯度、信息熵、标准差、空间频率等客观评价指标上也优于其他图像融合方法。 展开更多
关键词 红外与可见光图像融合 双马尔可夫鉴别器 生成器 梯度残差密集
在线阅读 下载PDF
基于光流残差的视频超分辨率重建算法 被引量:3
9
作者 吴昊 赖惠成 +1 位作者 钱绪泽 陈豪 《计算机工程与应用》 CSCD 北大核心 2022年第15期220-228,共9页
随着卷积神经网络的发展,视频超分辨率算法取得了显著的成功。因为帧与帧之间的依赖关系比较复杂,所以传统方法缺乏对复杂的依赖关系进行建模的能力,难以对视频超分辨率重建的过程进行精确地运动估计和补偿。因此提出一个基于光流残差... 随着卷积神经网络的发展,视频超分辨率算法取得了显著的成功。因为帧与帧之间的依赖关系比较复杂,所以传统方法缺乏对复杂的依赖关系进行建模的能力,难以对视频超分辨率重建的过程进行精确地运动估计和补偿。因此提出一个基于光流残差的重建网络,在低分辨率空间使用密集残差网络得到相邻视频帧的互补信息,通过金字塔的结构来预测高分辨率视频帧的光流,通过亚像素卷积层将低分辨率的视频帧变成高分辨率视频帧,并将高分辨率的视频帧与预测的高分辨率光流进行运动补偿,将其输入到超分辨率融合网络来得到更好的效果,提出新的损失函数训练网络,能够更好地对网络进行约束。在公开数据集上的实验结果表明,重建效果在峰值信噪比、结构相似度、主观视觉的效果上均有提升。 展开更多
关键词 视频超分辨率 光流估计 密集残差块
在线阅读 下载PDF
基于改进Real⁃ESRGAN的单图像超分辨率重建
10
作者 杨天澄 魏为民 +1 位作者 符程程 杨同 《现代电子技术》 北大核心 2025年第21期31-38,共8页
单图像超分辨率是计算机视觉中一个活跃的研究领域,旨在将给定的低分辨率图像生成高分辨率图像。近年来,深度卷积神经网络被广泛应用于图像超分辨率任务,现有的许多方法在获取高分辨率⁃低分辨率图像对的过程中使用基于插值下采样的方法... 单图像超分辨率是计算机视觉中一个活跃的研究领域,旨在将给定的低分辨率图像生成高分辨率图像。近年来,深度卷积神经网络被广泛应用于图像超分辨率任务,现有的许多方法在获取高分辨率⁃低分辨率图像对的过程中使用基于插值下采样的方法,但这在现实世界中会导致伪影。针对这一问题,文中提出一种基于Real⁃ESRGAN的改进模型,该模型结合了坐标注意力机制和多尺度残差密集块,并引入Charbonnier损失函数,以提升生成图像的纹理细节和稳定性。实验结果表明,与SRGAN和ESRGAN等经典模型相比,所提方法在真实图像的重建质量上有显著提升。通过在多个测试数据集上的评估结果可知,所提模型在自然图像质量评估指标和感知指数方面表现优异,验证了其有效性和优越性。 展开更多
关键词 单图像超分辨率 Real⁃ESRGAN 坐标注意力 多尺度残差密集 Charbonnier 特征提取
在线阅读 下载PDF
GPR图像的数据集构建及其DRDU-Net去噪算法
11
作者 王惠琴 高大庆 +3 位作者 何永强 刘宾灿 王莹 曹明华 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期20-28,共9页
为了解决生成对抗网络(Generative Adversarial Network,GAN)在生成探地雷达(Ground Penetrating Radar,GPR)图像时存在训练不稳定的问题,提出利用带有梯度惩罚的Wasserstein距离生成对抗网络(WGAN-GP)生成GPR图像,并结合时域有限差分... 为了解决生成对抗网络(Generative Adversarial Network,GAN)在生成探地雷达(Ground Penetrating Radar,GPR)图像时存在训练不稳定的问题,提出利用带有梯度惩罚的Wasserstein距离生成对抗网络(WGAN-GP)生成GPR图像,并结合时域有限差分法和实地采集图像提出了一种构建GPR图像数据集的方法.相较于原始GAN与Wasserstein GAN等方法,WGAN-GP具有更好的稳定性,而且生成的GPR图像更接近真实图像.在此基础之上,将密集残差块和U-Net相结合提出了一种适合于GPR图像的密集残差去噪U-Net方法.该方法利用U-Net中编码-解码结构提高了GPR图像的去噪性能;同时,密集残差块的引入加强了GPR图像的特征复用,且使U-Net训练更加稳定.最后,利用仿真实验验证了所提去噪方法的性能,并与三维块匹配(BM3D)和U-Net方法进行了对比.结果表明:所提方法与BM3D以及U-Net去噪方法相比,具有更好的去噪效果.当σ等于20时,在模拟和实测数据上取平均值,其峰值信噪比分别提升了约6.5 dB和2.4 dB;结构相似性分别提升了约0.09和0.04. 展开更多
关键词 GPR数据集构建 GPR图像去噪 WGAN-GP 密集残差块
在线阅读 下载PDF
基于生成对抗网络的深海图像增强算法 被引量:1
12
作者 郭银辉 张春堂 樊春玲 《电子测量技术》 北大核心 2024年第12期173-181,共9页
在复杂的深海环境中提高图像的质量和可视化效果对水下科学研究和工程应用具有重要意义。针对深海特殊环境导致深海数据集稀缺,以及深海图像存在的色彩失真、对比度低等问题本文构建了一个成对的深海图像数据集DSIEB,并在此基础上提出... 在复杂的深海环境中提高图像的质量和可视化效果对水下科学研究和工程应用具有重要意义。针对深海特殊环境导致深海数据集稀缺,以及深海图像存在的色彩失真、对比度低等问题本文构建了一个成对的深海图像数据集DSIEB,并在此基础上提出了一种结合DC注意力和MSDR多尺度密集残差的生成对抗网络DM-GAN算法。首先,在网络跳跃连接部分构建DC双重通道注意力机制,用于加强通道间联系,提取图像细节纹理特征。其次,在生成器结构中嵌入MSDR多尺度密集残差块,提高对局部信息的关注和特征重用能力。最后,重构新的损失函数,引入平滑保真度SF损失,从多个角度引导网络学习原始图像到目标图像的映射。通过在自建数据集DSIEB上进行实验验证,并与7种先进水下图像增强算法进行对比实验,实验结果表明本文所提算法具有更强的泛化能力,适应于多样性的深海图像。 展开更多
关键词 深海图像增强 生成对抗网络 DC双重通道注意力机制 MSDR多尺度密集残差块 SF损失
在线阅读 下载PDF
基于帧间跨越光流的视频超分辨率重建网络
13
作者 刘扬 刘蓉 +2 位作者 方可 张心月 王光旭 《计算机应用》 CSCD 北大核心 2024年第4期1277-1284,共8页
面对运动幅度较大的复杂场景,当前的视频超分辨率(VSR)算法在处理长序列时无法充分利用不同距离的帧间信息,难以精确地恢复遮挡、边界和多细节区域。为解决上述问题,提出一种基于帧间跨越光流机制的VSR模型。首先,通过密集残差块(RDB)... 面对运动幅度较大的复杂场景,当前的视频超分辨率(VSR)算法在处理长序列时无法充分利用不同距离的帧间信息,难以精确地恢复遮挡、边界和多细节区域。为解决上述问题,提出一种基于帧间跨越光流机制的VSR模型。首先,通过密集残差块(RDB)提取低分辨率视频帧(LR)的浅层特征;其次,通过光流空间金字塔网络(SPyNet)以不同时间长度的跨越光流对视频帧进行运动估计和运动补偿,并通过RDB对帧间信息进行深层特征提取与矫正;最后,融合浅层特征与深层特征,并通过上采样得到高分辨率视频帧(HR)。在REDS4公开数据集上的实验结果表明,所提模型与经典的非显式运动补偿的动态上采样滤波器视频超分辨率网络(DUF-VSR)相比,峰值信噪比(PSNR)和结构相似性(SSIM)分别提升了1.07 dB和0.06。验证了所提模型可有效提高视频图像重建的质量。 展开更多
关键词 视频超分辨率算法 光流 运动补偿 密集残差块 深层特征
在线阅读 下载PDF
基于生成对抗网络的工业场景低质图像增强算法
14
作者 叶旭辉 倪蔚恒 +2 位作者 陈燕 尹芹凯 张道德 《组合机床与自动化加工技术》 北大核心 2024年第9期41-45,共5页
针对工业场景下图像模糊、分辨率低、边缘细节不明显等问题,提出一种基于生成对抗网络的低质图像增强算法。首先,设计退化网络获得与真实场景更为接近的低质图像,以此与现实高清图像获得特征映射关系;其次,在使用密集残差块(residual in... 针对工业场景下图像模糊、分辨率低、边缘细节不明显等问题,提出一种基于生成对抗网络的低质图像增强算法。首先,设计退化网络获得与真实场景更为接近的低质图像,以此与现实高清图像获得特征映射关系;其次,在使用密集残差块(residual in residual dense block,RRDB)的基础上添加卷积注意力模块,增强RRDB网络的特征表达能力,以有效地捕获关键特征信息;最后,设计边缘增强网络模块结合改进的RRDB作为生成器,图像细节信息的捕捉与还原能力得到显著提升,并与判别器对抗生成更高质量的图像。实验结果表明,相较于现有常用的图像增强算法,所提算法能有效提升工业场景图像清晰度、保留图像细节并减少失真。定量指标峰值信噪比平均提升10.45%,结构相似性平均提升15.92%,运行速度快,能满足工业生产需求。 展开更多
关键词 工业场景 退化 密集残差块 注意力 边缘增强
在线阅读 下载PDF
小样本条件下雷达信号的生成与轻量化识别
15
作者 李辉 王悦悦 +2 位作者 魏坡 邹波蓉 王伟东 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期142-151,共10页
目的针对目前深度学习方法在雷达信号识别中需要海量数据且网络复杂、计算量大、设备要求高等问题,方法提出一种联合改进CycleGAN和MobileNetV3-Small轻量化卷积神经网络的雷达信号识别算法。首先,选取8种常见的雷达信号类型构建时域序... 目的针对目前深度学习方法在雷达信号识别中需要海量数据且网络复杂、计算量大、设备要求高等问题,方法提出一种联合改进CycleGAN和MobileNetV3-Small轻量化卷积神经网络的雷达信号识别算法。首先,选取8种常见的雷达信号类型构建时域序列,为了更好保留时频特征,在信号预处理阶段将其通过崔-威廉斯分布形成图像数据集,在数据集扩充阶段将图像数据集作为CycleGAN迁移网络的输入,约束指导目标图像的生成,以解决样本不足的问题;然后,在CycleGAN的生成器中引入U-Net结构和残差密集块并更改判别器的判别方式和损失函数,以解决数据集扩增过程中的特征模糊和梯度消失等问题;最后,在信号识别阶段,通过构建具有代表性的MobileNetV3-Small轻量化网络,完成识别验证任务。结果图像生成网络CycleGAN的图像评价指标PSNR为39.74 dB,SSIM为0.95;MobileNet-Small信号识别网络模型迭代训练100次的参数量为1538942,总运行时间为2152 s,FLOPs为127351188,准确率为99.30%。结论本文算法生成的图像与真实样本相似度高、失真度小,在不以牺牲准确率为代价的前提下识别速度有很大提升,有效实现了小样本条件下雷达信号的高精度识别。 展开更多
关键词 雷达信号识别 崔-威廉斯分布 残差密集 CycleGAN MobileNetV3-Small
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
16
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
在线阅读 下载PDF
多尺度注意力交互式图像去噪网络 被引量:1
17
作者 罗军伟 张真 +2 位作者 雒芬 乔应旭 霍占强 《河南理工大学学报(自然科学版)》 CAS 北大核心 2023年第5期144-153,共10页
图像去噪中,针对去噪网络提取图像细节信息不全面和特征利用率低的问题,提出一种基于深度学习的多尺度注意力交互式图像去噪网络(MAINet)。首先,对于浅层像素级特征采用多尺度特征提取块获取丰富的上下文信息和图像纹理特征,以保证图像... 图像去噪中,针对去噪网络提取图像细节信息不全面和特征利用率低的问题,提出一种基于深度学习的多尺度注意力交互式图像去噪网络(MAINet)。首先,对于浅层像素级特征采用多尺度特征提取块获取丰富的上下文信息和图像纹理特征,以保证图像信息的完整性;然后,引入双路通道注意力机制指导网络获取更具判别性的特征信息,抑制不期望的噪声,从而进一步优化特征信息;最后,利用分类密集残差块的密集连接和成对卷积操作增强模型的交互性,对全局多层次特征进行联合学习,提取更高质量的语义级特征,以提升去噪网络的性能。实验结果表明,在定量和定性评估方面,所提出的去噪网络在合成噪声和真实噪声两种数据集上的去噪效果都有所提升。 展开更多
关键词 深度学习 图像去噪 多尺度特征提取 双路通道注意力机制 分类密集残差块
在线阅读 下载PDF
基于生成对抗网络的行人异常行为图像去模糊算法研究 被引量:4
18
作者 吉训生 滕彬 《光电工程》 CAS CSCD 北大核心 2021年第6期29-39,共11页
为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法。使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值。将原... 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法。使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值。将原算法生成器结构中的残差单元替换成密集残差块(RRDB),然后将得到的残差特征缩放到0∼1之间的值,避免训练不稳定。在原生成器的损失函数中添加梯度图像的L1损失,增加图像的边缘信息使重建后的图像边缘更明显,克服了DeblurGAN重建图像边缘细节不够清晰的缺陷。经实验验证,并和文献[14]、文献[18]进行比较,结果显示:优化后的模型与DeblurGAN相比,峰值信噪比提高0.94,结构相似度和速度相当,并解决了重建后图像棋盘格子的问题,细节边缘更加突出,模型性能优于相关算法。 展开更多
关键词 生成对抗网络 运动模糊 密集残差块 图像重建
在线阅读 下载PDF
一种改进R(2+1)D网络的暴力行为检测方法 被引量:1
19
作者 王勇 靳伟昭 +1 位作者 冯伟 全英汇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第2期155-163,217,共10页
公共安全中复杂的暴力行为检测具有重要的研究价值。传统的研究方法主要基于手工设计的特征,泛化能力较差,现有的深度学习网络模型泛化能力强但准确率较低。针对上述问题,提出了一个结合R(2+1)D改进网络和密集连接思想的暴力行为检测方... 公共安全中复杂的暴力行为检测具有重要的研究价值。传统的研究方法主要基于手工设计的特征,泛化能力较差,现有的深度学习网络模型泛化能力强但准确率较低。针对上述问题,提出了一个结合R(2+1)D改进网络和密集连接思想的暴力行为检测方法。由于原R(2+1)D残差模块支路中的步长为2的卷积操作忽略了特征图的3/4,所以将其优化为池化操作和步长为1的卷积操作。本实验的数据集共有1500个视频样本,具体包括曲棍球比赛数据集和自制数据集。实验结果证明,改进后R(2+1)D网络相比原网络准确率分别提高了约2.30%和1.00%。另外,引入密集连接思想,将残差模块中的不同卷积层级间建立连接,使残差块中的卷积层输出特征图可重复使用,这在一定程度上减轻了训练过程中梯度消散的问题。通过在相同数据集上进行测试,发现改进后(2+1)D网络相比传统的方法,检测精度进一步提升了约1.47%和0.93%。因此,在公开的经典暴力行为检测数据集上的实验证明,相对于传统的3种网络学习方法,该算法能够更好地表示暴力行为信息,是一种更加简单有效的暴力行为检测方法。 展开更多
关键词 暴力行为检测 (2+1)D密集残差块 残差网络 深度学习
在线阅读 下载PDF
基于多通道注意力机制的图像超分辨率重建网络 被引量:1
20
作者 张晔 刘蓉 +1 位作者 刘明 陈明 《计算机应用》 CSCD 北大核心 2022年第5期1563-1569,共7页
针对现有的图像超分辨率重建方法存在生成图像纹理扭曲、细节模糊等问题,提出了一种基于多通道注意力机制的图像超分辨率重建网络。首先,该网络中的纹理提取模块通过设计多通道注意力机制并结合一维卷积实现跨通道的信息交互,以关注重... 针对现有的图像超分辨率重建方法存在生成图像纹理扭曲、细节模糊等问题,提出了一种基于多通道注意力机制的图像超分辨率重建网络。首先,该网络中的纹理提取模块通过设计多通道注意力机制并结合一维卷积实现跨通道的信息交互,以关注重要特征信息;然后,该网络中的纹理恢复模块引入密集残差块来尽可能恢复部分高频纹理细节,从而提升模型性能并产生优质重建图像。所提网络不仅能够有效提升图像的视觉效果,而且在基准数据集CUFED5上的结果表明所提网络与经典的基于卷积神经网络的超分辨率重建(SRCNN)方法相比,峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了1.76 dB和0.062。实验结果表明,所提网络可提高纹理迁移的准确性,并有效提升生成图像的质量。 展开更多
关键词 图像超分辨率重建 纹理迁移 注意力机制 一维卷积 密集残差块
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部