期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于TA-UNet3+的高分辨率遥感图像地表水体提取
1
作者 白倩 罗小波 母仕林 《计算机工程与应用》 北大核心 2025年第13期245-255,共11页
遥感图像中准确提取地表水体信息对于水资源管理、环境监测等领域至关重要。然而,由于地表覆盖的多样性、水体与周围环境的交汇、植被的复杂遮挡等因素,使得这项任务仍然面临着一系列挑战。为了提高地表水体提取精度,基于U-Net3+网络进... 遥感图像中准确提取地表水体信息对于水资源管理、环境监测等领域至关重要。然而,由于地表覆盖的多样性、水体与周围环境的交汇、植被的复杂遮挡等因素,使得这项任务仍然面临着一系列挑战。为了提高地表水体提取精度,基于U-Net3+网络进行优化,提出了一种适用于高分辨率遥感图像的TA-UNet3+网络模型。在编码器端由深度特征到浅层逐层引入窗口注意力嵌入模块,将来自更深层特征的局部注意力逐步嵌入到较低级特征中,提高特征图的语义理解能力。引入了结合阈值注意力和深度可分离的TA-ASPP模块,有效提高了特征信息的提取效率。在解码器端修改了多尺度融合模块,采用可学习的密集上采样卷积和深度分离卷积替代原始的双线性插值与普通卷积,在保证精度的同时显著降低了计算复杂度。数据集选择了重庆市不同场景下的部分地区,实验结果表明,TA-UNet3+网络模型在精度、召回率、F1和IoU等评价指标上均优于语义分割网络,表现出更高的地表水体提取精度。 展开更多
关键词 地表水体提取 遥感图像 TA-UNet3+ 阈值注意力 密集上采样卷积 TA-ASPP模块 窗口注意力
在线阅读 下载PDF
基于全卷积网络的图像语义分割算法 被引量:8
2
作者 李英杰 张惊雷 《计算机应用与软件》 北大核心 2020年第8期213-218,273,共7页
基于卷积神经网络的语义分割模型易存在提取特征不充分、上采样恢复原图尺寸时丢失细节等问题,导致分割精度降低。对比提出一种基于全卷积网络DeepLab v3的改进算法。采用LeakyReLU激活函数,增强网络提取较弱特征的能力;输入图像在多孔... 基于卷积神经网络的语义分割模型易存在提取特征不充分、上采样恢复原图尺寸时丢失细节等问题,导致分割精度降低。对比提出一种基于全卷积网络DeepLab v3的改进算法。采用LeakyReLU激活函数,增强网络提取较弱特征的能力;输入图像在多孔空间金字塔池化(ASPP)后,使用密集上采样卷积(DUC)恢复与原图尺寸一致的预测图;在训练时使用Nadam优化器,提高网络的收敛速度和鲁棒性。在PASCAL VOC 2012数据集上进行了验证与评测,结果表明算法平均交并比(mIoU)相比于原算法提高0.6%。 展开更多
关键词 语义分割 深度卷积网络 多孔空间金字塔池化 密集上采样卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部