期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于密度自适应距离的密度峰聚类 被引量:6
1
作者 李涛 葛洪伟 苏树智 《小型微型计算机系统》 CSCD 北大核心 2017年第6期1347-1352,共6页
密度峰聚类是一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,能够发现非球形簇.针对基于欧氏距离的密度峰聚类算法无法有效处理复杂结构数据集的缺陷,提出了基于密度自适应距离的密度峰聚类算法:首先,基于欧氏距离和自适应... 密度峰聚类是一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,能够发现非球形簇.针对基于欧氏距离的密度峰聚类算法无法有效处理复杂结构数据集的缺陷,提出了基于密度自适应距离的密度峰聚类算法:首先,基于欧氏距离和自适应相似度计算密度自适应距离,包括局部密度自适应距离和全局密度自适应距离,以更好地描述数据空间分布结构;其次,将密度自适应距离应用到密度峰聚类算法中,得到新算法.在人工数据集和UCI真实数据集上的实验表明,新算法不仅能够有效处理复杂结构数据集,而且具有更高的准确率. 展开更多
关键词 聚类 密度峰聚类 自适应相似度 密度自适应距离
在线阅读 下载PDF
自然邻居密度极值聚类算法 被引量:2
2
作者 张忠林 赵昱 闫光辉 《计算机工程与应用》 CSCD 北大核心 2021年第23期200-210,共11页
针对密度峰值聚类算法存在数据集密度差异较大时,低密度区域聚类中心难以检测和参数敏感的问题,提出了一种新型密度极值算法。引入自然邻居概念寻找数据对象自然近邻,定义椭圆模型计算自然稳定状态下数据局部密度;计算数据对象余弦相似... 针对密度峰值聚类算法存在数据集密度差异较大时,低密度区域聚类中心难以检测和参数敏感的问题,提出了一种新型密度极值算法。引入自然邻居概念寻找数据对象自然近邻,定义椭圆模型计算自然稳定状态下数据局部密度;计算数据对象余弦相似性值,用余弦相似性值来更新数据对象连通值,采用连通值划分高低密度区域和离群点;构造密度极值函数找到高低密度不同区域聚类中心点;将不同区域非聚类中心点归并到离其最近的聚类中心所在簇中。通过在合成数据集和UCI公共数据集实验分析:该算法比其他对比算法在处理密度分布差异较大数据集上取得了更好的结果。 展开更多
关键词 聚类 自然邻居 密度自适应距离 锚点 连通值 密度极值
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部