针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(density-based clustering algor...针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(density-based clustering algorithm based on groups and improve gravitational search,MR-GDBIGS)。首先,该算法设计了基于图形的分组策略(grouping strategy based on pattern,GSP)来有效划分数据,加速邻域搜索,解决了处理大数据集时伸缩困难的问题;其次,在局部聚类中提出基于位置更新函数(position update function,PUF)的重力搜索优化算法,动态寻找局部聚类中的最优参数,提升了局部聚类的效果;最后,提出基于覆盖树的并行局部簇合并策略(cluster merging strategy by using MapReduce,MR-CTMC),在实现局部簇并行化合并的同时加快了合并局部簇的收敛速度,提升了算法整体的并行化效率。实验结果表明,MR-GDBIGS算法在处理大数据时的聚类效果更佳,且并行化性能更好。展开更多
针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-...针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-DBIFOA)。首先,该算法基于KD树,提出网格划分策略(divide gird based on KD tree,KDG)来自动划分数据网格;其次在局部聚类中,提出基于自适应搜索策略(step strategy based on knowledge learn,KLSS)和聚类判定函数(clustering criterion function,CCF)的果蝇群优化算法(improve fruit fly optimization algorithm,IFOA);然后根据IFOA进行局部聚类中最优参数的动态寻优,从而使局部聚类的聚类效果得到提升;同时结合MapReduce模型提出局部聚类算法DBIFOA(density-based clustering algorithm using IFOA);最后提出了基于QR-tree的并行合并局部簇算法(cluster merging algorithm by using MapReduce,MR-QRMEC),实现局部簇的并行合并,使算法整体的并行性能得到加强。实验表明,MR-DBIFOA在大数据下的并行效率更高,且聚类效果更好。展开更多
为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模...为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模型及结合三比值法对新数据进行故障评估。该方法在弥补聚类方法无法准确反映故障状态和三比值法编码不全、编码太片面等不足的同时,在变压器状态发生变化时能随着新数据的输入自主修正故障状态评估模型。不同实验结果表明该方法用在变压器故障评估中,具有较高的故障评估准确率,并且当出现未知故障时能有效修正所搭建故障状态评估模型,可以在一定程度上反映变压器故障状态,保证变压器正常、安全运行。展开更多
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化...为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。展开更多
文摘针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(density-based clustering algorithm based on groups and improve gravitational search,MR-GDBIGS)。首先,该算法设计了基于图形的分组策略(grouping strategy based on pattern,GSP)来有效划分数据,加速邻域搜索,解决了处理大数据集时伸缩困难的问题;其次,在局部聚类中提出基于位置更新函数(position update function,PUF)的重力搜索优化算法,动态寻找局部聚类中的最优参数,提升了局部聚类的效果;最后,提出基于覆盖树的并行局部簇合并策略(cluster merging strategy by using MapReduce,MR-CTMC),在实现局部簇并行化合并的同时加快了合并局部簇的收敛速度,提升了算法整体的并行化效率。实验结果表明,MR-GDBIGS算法在处理大数据时的聚类效果更佳,且并行化性能更好。
文摘针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-DBIFOA)。首先,该算法基于KD树,提出网格划分策略(divide gird based on KD tree,KDG)来自动划分数据网格;其次在局部聚类中,提出基于自适应搜索策略(step strategy based on knowledge learn,KLSS)和聚类判定函数(clustering criterion function,CCF)的果蝇群优化算法(improve fruit fly optimization algorithm,IFOA);然后根据IFOA进行局部聚类中最优参数的动态寻优,从而使局部聚类的聚类效果得到提升;同时结合MapReduce模型提出局部聚类算法DBIFOA(density-based clustering algorithm using IFOA);最后提出了基于QR-tree的并行合并局部簇算法(cluster merging algorithm by using MapReduce,MR-QRMEC),实现局部簇的并行合并,使算法整体的并行性能得到加强。实验表明,MR-DBIFOA在大数据下的并行效率更高,且聚类效果更好。
文摘为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模型及结合三比值法对新数据进行故障评估。该方法在弥补聚类方法无法准确反映故障状态和三比值法编码不全、编码太片面等不足的同时,在变压器状态发生变化时能随着新数据的输入自主修正故障状态评估模型。不同实验结果表明该方法用在变压器故障评估中,具有较高的故障评估准确率,并且当出现未知故障时能有效修正所搭建故障状态评估模型,可以在一定程度上反映变压器故障状态,保证变压器正常、安全运行。
文摘为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。