期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
基于密度聚类算法和广度优先搜索算法的道岔摩擦电流智能分析系统 被引量:1
1
作者 邱晓莉 韩思远 +1 位作者 熊庆 余东 《城市轨道交通研究》 北大核心 2024年第4期114-118,共5页
[目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出... [目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出建立道岔摩擦电流的智能分析系统。阐述了该系统的功能及工作原理,设定了该系统的摩擦电流标准值及阈值范围。该系统可基于密度聚类算法和广度优先搜索算法自动获取道岔摩擦电流值。介绍了该系统的调试界面截图,以说明系统在获取道岔摩擦电流值如何为现场检修人员提供操作建议。[结果及结论]该智能系统具有良好的可用性,实现了节约检修时间、降低维护成本和提高检修效率的既定目的。 展开更多
关键词 城市轨道交通 信号 智能运维 道岔转辙机 摩擦电流 密度聚类算法 广度优先搜索算法
在线阅读 下载PDF
VDBSCAN:变密度聚类算法 被引量:22
2
作者 周董 刘鹏 《计算机工程与应用》 CSCD 北大核心 2009年第11期137-141,153,共6页
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同... 传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。 展开更多
关键词 密度聚类算法 基于密度 DBSCAN 数据挖掘
在线阅读 下载PDF
阈值优化的文本密度聚类算法 被引量:6
3
作者 马素琴 施化吉 《计算机工程与应用》 CSCD 北大核心 2011年第17期134-136,共3页
针对DBSCAN算法的聚类性能受全局阈值影响而降低的问题,提出一种阈值优化的文本密度聚类算法。该算法使用k-近邻距离对对象进行排序,通过分位数区分密度不同的各序列,找到与其对应的优化,根据优化阈值使用密度聚类方法对对象进行聚类。... 针对DBSCAN算法的聚类性能受全局阈值影响而降低的问题,提出一种阈值优化的文本密度聚类算法。该算法使用k-近邻距离对对象进行排序,通过分位数区分密度不同的各序列,找到与其对应的优化,根据优化阈值使用密度聚类方法对对象进行聚类。改进后的聚类算法克服了阈值选取对聚类结果影响的问题,提高了聚类精确度和时间效率。采用树形结构存储聚簇,增加了聚簇的可读性。实验结果证明了该算法的有效性。 展开更多
关键词 文本挖掘 文本 一个基于高密度连接区域的密度方法 一种阈值优化的文本密度聚类算法 分位数
在线阅读 下载PDF
基于分组和IGSA的并行密度聚类算法 被引量:4
4
作者 胡春安 王家欣 毛伊敏 《计算机应用研究》 CSCD 北大核心 2021年第11期3293-3299,共7页
针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(density-based clustering algor... 针对并行密度聚类算法在处理大数据集时存在伸缩困难、参数寻优能力不佳、并行化效率较低等问题,提出一种基于分组和重力搜索优化算法(improve gravitational search algorithm,IGSA)的并行密度聚类算法(density-based clustering algorithm based on groups and improve gravitational search,MR-GDBIGS)。首先,该算法设计了基于图形的分组策略(grouping strategy based on pattern,GSP)来有效划分数据,加速邻域搜索,解决了处理大数据集时伸缩困难的问题;其次,在局部聚类中提出基于位置更新函数(position update function,PUF)的重力搜索优化算法,动态寻找局部聚类中的最优参数,提升了局部聚类的效果;最后,提出基于覆盖树的并行局部簇合并策略(cluster merging strategy by using MapReduce,MR-CTMC),在实现局部簇并行化合并的同时加快了合并局部簇的收敛速度,提升了算法整体的并行化效率。实验结果表明,MR-GDBIGS算法在处理大数据时的聚类效果更佳,且并行化性能更好。 展开更多
关键词 大数据 密度聚类算法 基于图形的分组策略 重力搜索优化算法 MR-CTMC策略
在线阅读 下载PDF
基于相异性选择的密度聚类算法研究 被引量:2
5
作者 胡文瑜 孙志挥 周晓云 《小型微型计算机系统》 CSCD 北大核心 2006年第9期1601-1604,共4页
在最优K相异性算法(OptiSim)的基础上,提出一种扩展的最优K相异性算法(EOptiSim),由于EOptiSim在处理组合数据库和分布式数据库方面能弥补基本的OptiSim方法的不足,所以通过在DBSCAN算法之前应用OptiSim或EOptiSim多样化代表性子集选择... 在最优K相异性算法(OptiSim)的基础上,提出一种扩展的最优K相异性算法(EOptiSim),由于EOptiSim在处理组合数据库和分布式数据库方面能弥补基本的OptiSim方法的不足,所以通过在DBSCAN算法之前应用OptiSim或EOptiSim多样化代表性子集选择技术,在显著降低I/O耗费和内存需求的同时,不仅能够有效地聚类单一的大规模空间数据库,而且还能聚类大规模组合数据库或分布式数据库.实验结果表明本文的算法是可行、有效的. 展开更多
关键词 分析 多样化代表性子集选择 相异性选择算法 密度聚类算法
在线阅读 下载PDF
基于最优K相异性的密度聚类算法研究 被引量:2
6
作者 胡文瑜 孙志挥 周晓云 《计算机工程与应用》 CSCD 北大核心 2005年第22期171-173,201,共4页
该文提出一种利用最优K相异性算法(OptiSim)的密度聚类算法,通过代表性子集选择技术与DBSCAN算法的结合,可显著降低I/O耗费和内存需求,使之能够有效地处理大规模空间数据库,并提出一种扩展的OptiSim代表性子集选择方法(EOptiSim),它在... 该文提出一种利用最优K相异性算法(OptiSim)的密度聚类算法,通过代表性子集选择技术与DBSCAN算法的结合,可显著降低I/O耗费和内存需求,使之能够有效地处理大规模空间数据库,并提出一种扩展的OptiSim代表性子集选择方法(EOptiSim),它在处理组合数据库方面能弥补基本的OptiSim方法的不足。实验结果表明文章的算法是可行、有效的。 展开更多
关键词 分析 代表性子集选择 密度聚类算法
在线阅读 下载PDF
基于MapReduce和IFOA的并行密度聚类算法 被引量:3
7
作者 胡健 徐锴滨 毛伊敏 《计算机应用研究》 CSCD 北大核心 2021年第5期1336-1343,共8页
针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-... 针对大数据下密度聚类算法中存在的数据划分不合理、参数寻优能力不佳、并行性能较低等问题,提出一种基于IFOA的并行密度聚类算法(density-based clustering algorithm by using improve fruit fly optimization based on MapReduce,MR-DBIFOA)。首先,该算法基于KD树,提出网格划分策略(divide gird based on KD tree,KDG)来自动划分数据网格;其次在局部聚类中,提出基于自适应搜索策略(step strategy based on knowledge learn,KLSS)和聚类判定函数(clustering criterion function,CCF)的果蝇群优化算法(improve fruit fly optimization algorithm,IFOA);然后根据IFOA进行局部聚类中最优参数的动态寻优,从而使局部聚类的聚类效果得到提升;同时结合MapReduce模型提出局部聚类算法DBIFOA(density-based clustering algorithm using IFOA);最后提出了基于QR-tree的并行合并局部簇算法(cluster merging algorithm by using MapReduce,MR-QRMEC),实现局部簇的并行合并,使算法整体的并行性能得到加强。实验表明,MR-DBIFOA在大数据下的并行效率更高,且聚类效果更好。 展开更多
关键词 大数据 密度聚类算法 KD树 果蝇优化
在线阅读 下载PDF
一种可扩展半径的RNA二级结构密度聚类算法
8
作者 王常武 王秀芹 +3 位作者 魏真真 王宝文 刘文远 李永强 《小型微型计算机系统》 CSCD 北大核心 2015年第9期1968-1972,共5页
基于自由能模型预测RNA二级结构时,真实结构可能存在于高于最小自由能一定范围内的次优结构集合中.通过对RNA次优结构集合聚类,选取代表性的结构,可以提高RNA二级结构预测的准确率.针对可变密度的RNA二级结构数据集合,提出了一种可扩展... 基于自由能模型预测RNA二级结构时,真实结构可能存在于高于最小自由能一定范围内的次优结构集合中.通过对RNA次优结构集合聚类,选取代表性的结构,可以提高RNA二级结构预测的准确率.针对可变密度的RNA二级结构数据集合,提出了一种可扩展半径的密度聚类算法.算法利用特征选择方法对特征集合进行筛选,选取与聚类相关度较高的特征子集,降低聚类空间的维度.聚类过程,以最大密度对象作为簇的初始聚类中心,根据簇内的密度分布情况和密度变化参数更新簇的半径,直到簇扩展完成.实验表明,该算法可以识别并处理变密度簇,能够有效地聚类RNA二级结构. 展开更多
关键词 RNA二级结构 次优结构 密度聚类算法 特征选择
在线阅读 下载PDF
一种基于扩展区域查询的密度聚类算法
9
作者 杨杰明 吴启龙 +3 位作者 曲朝阳 张慧莉 蔺洪文 吕正卓 《计算机应用研究》 CSCD 北大核心 2017年第10期2938-2941,2992,共5页
针对DBSCAN算法中最小点数和最大邻域半径难以确定、算法时间开销大、对起始数据点的选择比较敏感,以及难以发现不同密度下的邻近簇等问题,提出一种基于扩展区域查询的密度聚类算法(GISN-DBSCAN)。该方法首先提出扩展区域查询算法,随后... 针对DBSCAN算法中最小点数和最大邻域半径难以确定、算法时间开销大、对起始数据点的选择比较敏感,以及难以发现不同密度下的邻近簇等问题,提出一种基于扩展区域查询的密度聚类算法(GISN-DBSCAN)。该方法首先提出扩展区域查询算法,随后采用最近邻域和反最近邻域的邻域关系,建立每个点的k-影响空间域;最后提出一种异常点判定函数,使得算法能够准确地识别边界点和噪声点。实验结果表明,GISN-DBSCAN算法能够有效地解决DBSCAN算法的不足。 展开更多
关键词 密度聚类算法 扩展区域查询 k-影响空间域 边界点检测
在线阅读 下载PDF
基于引力核密度聚类算法的作物病害叶片区域的快速检测
10
作者 刘哲 黄文准 王利平 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期488-494,共7页
针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合... 针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合特征直方图曲线的峰值点和峰值区域,确定病害叶片图像聚类数和初始聚类中心;根据初步确定的病变叶片图像的聚类中心,运用引力核密度聚类算法快速完成对病害叶片病斑的分割。试验结果表明,基于引力核密度聚类算法的平均分割精度达80%以上,平均检测时间为4.912 s,优于已有病害区域分割算法K–means和Meanshift的性能。 展开更多
关键词 引力核密度聚类算法 作物病害叶片 图像分割 颜色空间
在线阅读 下载PDF
可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法 被引量:18
11
作者 谷保平 马建红 《计算机应用与软件》 北大核心 2021年第5期337-343,共7页
针对非结构化大数据难以实现安全存储和易遭受安全攻击的问题,提出可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法。利用可撤销属性方法为非结构化大数据提供安全的存储结构,通过区分安全攻击和传输错误来防止大数据... 针对非结构化大数据难以实现安全存储和易遭受安全攻击的问题,提出可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法。利用可撤销属性方法为非结构化大数据提供安全的存储结构,通过区分安全攻击和传输错误来防止大数据的误传和避免安全攻击;利用霍夫曼压缩技术对数据进行快速压缩,节省非结构化大数据处理过程中的时间开销;利用错误控制技术为潜在丢失的数据提供备份系统,并利用快速密度聚类算法有效处理多维大数据文件。实验证明,相比于其他现有非结构化大数据安全存储方法,该方法的执行速度更快,时间开销更小,信息损失百分比更低,信噪比(SNR)和压缩比更高。 展开更多
关键词 可撤销属性加密 快速密度聚类算法 非结构化 大数据 安全存储 安全攻击 霍夫曼压缩
在线阅读 下载PDF
基于局部密度聚类算法的变压器故障状态评估 被引量:16
12
作者 罗伟明 吴帆 +4 位作者 黄业广 吴杰康 覃炜梅 龚杰 金尚婷 《广东电力》 2018年第8期81-90,共10页
为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模... 为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模型及结合三比值法对新数据进行故障评估。该方法在弥补聚类方法无法准确反映故障状态和三比值法编码不全、编码太片面等不足的同时,在变压器状态发生变化时能随着新数据的输入自主修正故障状态评估模型。不同实验结果表明该方法用在变压器故障评估中,具有较高的故障评估准确率,并且当出现未知故障时能有效修正所搭建故障状态评估模型,可以在一定程度上反映变压器故障状态,保证变压器正常、安全运行。 展开更多
关键词 油中溶解气体 局部密度聚类算法 三比值法 归一化处理 变压器 故障评估
在线阅读 下载PDF
邻域平衡密度聚类算法 被引量:22
13
作者 武佳薇 李雄飞 +1 位作者 孙涛 李巍 《计算机研究与发展》 EI CSCD 北大核心 2010年第6期1044-1052,共9页
聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中... 聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中的对象投影,进行向量单位化,考察核心对象的邻域平衡性,将与平衡核心对象平衡密度可达的对象聚成一个簇.理论分析和实验结果表明,算法可以处理任意形状的簇,有效地排除边界稀疏对象这类噪声,并且可以解决高维数据聚类边界区分不明显、噪声对象多等问题,提高了聚类精度.算法的时间复杂度与DBSCAN近似. 展开更多
关键词 投影点 邻域平衡 平衡核心对象 边界稀疏对象 基于密度算法
在线阅读 下载PDF
基于视觉原理的密度聚类算法 被引量:5
14
作者 王伟东 芦金婵 张讲社 《工程数学学报》 CSCD 北大核心 2005年第2期349-352,共4页
在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现... 在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现任意形状的聚类及能找到最优聚类等优点。 展开更多
关键词 视觉系统 分析 基于密度算法
在线阅读 下载PDF
基于Logsitic回归模型和自适应密度聚类算法的分行业负荷增长规律 被引量:1
15
作者 朱涛 陈翔 +1 位作者 高强 孟庆楠 《电网与清洁能源》 2019年第5期20-28,共9页
电力企业营配大数据的持续积累为电力用户负荷发展规律的研究提供了良好的数据基础。传统分行业负荷特性研究方法在海量数据挖掘上存在一定局限性,且缺乏对用户负荷年度成长模式的研究。应用Logsitic回归模型自动识别电力用户的饱和水... 电力企业营配大数据的持续积累为电力用户负荷发展规律的研究提供了良好的数据基础。传统分行业负荷特性研究方法在海量数据挖掘上存在一定局限性,且缺乏对用户负荷年度成长模式的研究。应用Logsitic回归模型自动识别电力用户的饱和水平值和增长速度,形成3项用户增长特性参数。应用参数自适应的密度聚类算法,分不同行业、不同规模搜索典型用户,获取增长特性参数的典型值,形成分行业分容量的典型负荷成长曲线。所提方法能够识别电力用户的负荷成长模式,降低数据维度,具备较好的大数据处理分析效果。最后对某沿海城市3万个电力用户进行模型验证,结果表明所提方法识别度较高,经挖掘得到的分行业负荷发展规律对负荷预测、电网规划有较强的指导意义。 展开更多
关键词 Logsitic模型 负荷成长模式 增长特性参数 应用密度聚类算法 分行业负荷增长曲线
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
16
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度聚类算法 子簇融合
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
17
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
融合优化可调Q因子小波变换的改进密度峰值聚类算法 被引量:2
18
作者 史曼曼 宋朝炀 张景祥 《计算机应用研究》 CSCD 北大核心 2024年第2期466-472,共7页
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化... 为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。 展开更多
关键词 密度峰值算法 可调Q因子小波变换 粒子群优化算法 主成分分析
在线阅读 下载PDF
基于类簇合并的无参数密度峰值聚类算法 被引量:1
19
作者 刘天娇 王胜景 袁永生 《现代电子技术》 北大核心 2024年第8期1-8,共8页
密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚... 密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚类算法(NDPCCM)。首先根据样本点两两之间的相似度的分布特征将其分为类内相似度和类间相似度两种类型,并利用类内相似度自动确定截断相似度,避免了人为设置参数;接着根据簇中心权值的下降趋势自动选择初始类簇中心,得到初始类簇;最后通过合并初始类簇对初步聚类结果进行优化,提高了聚类的准确性。在人工数据集和UCI真实数据集上,将所提算法与DPC、DBSCAN、K-means算法进行对比实验。结果表明所提算法无需输入参数就能够自动得到类簇,且聚类性能优于其他算法。 展开更多
关键词 分析 密度峰值算法 初始 簇合并 相似度 性能
在线阅读 下载PDF
基于网格相对密度差的扩展聚类算法 被引量:12
20
作者 黄红伟 黄天民 《计算机应用研究》 CSCD 北大核心 2014年第6期1702-1705,共4页
针对现有的多密度聚类算法对参数依赖性较高、聚类精度较低等问题,提出一种基于网格相对密度差的扩展聚类算法(ECRGDD)。首先,该算法给出一种网格划分方法,通过统计数据点的分布情况选取相对密集区域,采用近邻估计法计算网格划分大小的... 针对现有的多密度聚类算法对参数依赖性较高、聚类精度较低等问题,提出一种基于网格相对密度差的扩展聚类算法(ECRGDD)。首先,该算法给出一种网格划分方法,通过统计数据点的分布情况选取相对密集区域,采用近邻估计法计算网格划分大小的标准;接着,提出网格相对密度差的概念,根据网格密度值选取初始单元,通过计算网格之间的相对密度差围绕初始单元进行扩展聚类;最后,给出边界点提取技术,采用构建模糊函数的方法对边界单元进行处理。实验结果表明,该算法能有效地对不规则、多样化分布的数据集进行聚类,并能较好地分离出噪声,聚类精度较高。 展开更多
关键词 密度聚类算法 网格相对密度 扩展 近邻估计法 边界点 模糊函数
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部