传统离线数据分析方法对于处理即时性高和流量大的数据存在缺陷,而在线检测模型可以满足数据流分析的实时性要求。文中提出了一种基于多阈值模板的在线检测方法。该方法结合多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Sm...传统离线数据分析方法对于处理即时性高和流量大的数据存在缺陷,而在线检测模型可以满足数据流分析的实时性要求。文中提出了一种基于多阈值模板的在线检测方法。该方法结合多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法进行在线检测,基于突变点密度更新窗口长度从而提高了突变点检测精度。采用等量分级策略实现对时序数据的自学习、匹配和分类,进而对大规模病变数据进行状态检测和预测。仿真实验和病变数据的实验结果表明,所提方法具有效果高、分类准确等优点,为大规模时序数据进行快速分类研究提供了新方法。展开更多
There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we...There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we first introduce the definitions of the abhstract selection and evolution operators, and that of the abstract evolutionary algorithm, which describes the evolution as an abstract stochastic process composed of these two fundamental abstract operators. In particular, a kind of abstract evolutionary algorithms based on a special selection mechansim is discussed. According to the sorting for the state space, the properties of the single step transition matrix for the algorithm are anaylzed. In the end, we prove that the limit probability distribution of the Markov chains exists. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.展开更多
文摘传统离线数据分析方法对于处理即时性高和流量大的数据存在缺陷,而在线检测模型可以满足数据流分析的实时性要求。文中提出了一种基于多阈值模板的在线检测方法。该方法结合多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法进行在线检测,基于突变点密度更新窗口长度从而提高了突变点检测精度。采用等量分级策略实现对时序数据的自学习、匹配和分类,进而对大规模病变数据进行状态检测和预测。仿真实验和病变数据的实验结果表明,所提方法具有效果高、分类准确等优点,为大规模时序数据进行快速分类研究提供了新方法。
基金Supported by the National Science Foundation of China(60133010)Supported by the Science Foundation of Henan Province(2000110019)
文摘There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we first introduce the definitions of the abhstract selection and evolution operators, and that of the abstract evolutionary algorithm, which describes the evolution as an abstract stochastic process composed of these two fundamental abstract operators. In particular, a kind of abstract evolutionary algorithms based on a special selection mechansim is discussed. According to the sorting for the state space, the properties of the single step transition matrix for the algorithm are anaylzed. In the end, we prove that the limit probability distribution of the Markov chains exists. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.