采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311...采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平,计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWBNNT(9,9)内时,骨架碳氮原子间的键长不同程度地缩短,骨架碳原子的键角及骨架碳氮原子的二面角略有增大.反应路径研究发现:α-丙氨酸分子在SWBNNT(9,9)内的手性转变有两条同单体情况大致相同的反应通道,不存在单体情况的含有羰基H和甲基H协同转移过程的反应通道.手性转变反应过程的势能面计算发现:与单体α-丙氨酸手性转变反应过程的主要能垒相比较,在纸外面的氢从手性碳直接到羰基氧的过渡态产生的能垒,从326.5kJ·mol-1降到319.7kJ·mol-1;氢首先在羧基内转移,而后手性碳的氢在纸面外转移到羰基,这两个过程的能垒从198.0kJ·mol-1和320.3kJ·mol-1降到135.5kJ·mol-1和302.7kJ·mol-1.结果表明:限域在SWBNNT(9,9)内的α-丙氨酸,其手性转变过程中不同的氢转移反应能垒被不同程度地降低.展开更多
采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在...采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。展开更多
文摘结合对称性破损(BS)方法,采用不同的密度泛函理论(DFT)对反铁磁性μ-1,3-N3-Ni(II)叠氮配合物[LNi2(N3)](Cl O4)2(L=pyrazolate)的磁特性进行了研究.结果显示,杂化密度泛函理论(HDFT)的计算结果与实验数据非常吻合,能够准确描述配合物的磁特性.磁轨道研究结果表明,配合物表现出较大的单占据轨道能量劈裂(0.93-0.99 e V),显示配合物的单占据轨道去简并化程度较大,且配合物中的2个磁通道(叠氮基、配体pyrazolate)中都分别存在有氮原子之间的p轨道重叠,这些都使得体系表现为反铁磁耦合作用.另外,配合物的磁性与叠氮桥和两金属离子间形成的二面角(τ,Ni-N-N-N-Ni)密切相关,τ从-55.38°逐渐变化到-1.5°的过程中,其反铁磁性逐渐增强,交换耦合常数(Jab)的绝对值逐渐增大,并在-11.95°处达到最大值(Jab=-151.02 cm-1).在此过程中,配合物中叠氮桥及其所连接的2个Ni离子与pyrazolate基配体L-中的2个桥原子N(4)、N(5)形成的七元环共平面性不断增强,即共平面性会诱导增强体系的反铁磁相互作用.
文摘采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平,计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWBNNT(9,9)内时,骨架碳氮原子间的键长不同程度地缩短,骨架碳原子的键角及骨架碳氮原子的二面角略有增大.反应路径研究发现:α-丙氨酸分子在SWBNNT(9,9)内的手性转变有两条同单体情况大致相同的反应通道,不存在单体情况的含有羰基H和甲基H协同转移过程的反应通道.手性转变反应过程的势能面计算发现:与单体α-丙氨酸手性转变反应过程的主要能垒相比较,在纸外面的氢从手性碳直接到羰基氧的过渡态产生的能垒,从326.5kJ·mol-1降到319.7kJ·mol-1;氢首先在羧基内转移,而后手性碳的氢在纸面外转移到羰基,这两个过程的能垒从198.0kJ·mol-1和320.3kJ·mol-1降到135.5kJ·mol-1和302.7kJ·mol-1.结果表明:限域在SWBNNT(9,9)内的α-丙氨酸,其手性转变过程中不同的氢转移反应能垒被不同程度地降低.
文摘采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。