期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于RSA模型和改进K-means算法的电商行业客户细分
1
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-means算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于全局中心的高密度不唯一的K-means算法研究 被引量:10
2
作者 何云斌 刘雪娇 +2 位作者 王知强 万静 李松 《计算机工程与应用》 CSCD 北大核心 2016年第1期48-54,共7页
传统的K-means算法敏感于初始中心点的选取,并且无法事先确定准确的聚类数目k,不利于聚类结果的稳定性。针对传统K-means算法的以上不足,提出了基于全局中心的高密度不唯一的新方法——NDK-means,该方法通过标准差确定有效密度半径,并... 传统的K-means算法敏感于初始中心点的选取,并且无法事先确定准确的聚类数目k,不利于聚类结果的稳定性。针对传统K-means算法的以上不足,提出了基于全局中心的高密度不唯一的新方法——NDK-means,该方法通过标准差确定有效密度半径,并从高密度区域中选取具有代表性的样本点作为初始聚类中心。此外算法针对最高密度点不唯一的情况进行特别分析,选取距离全局中心最远的点集作为最优的初始中心点集合。在NDK-means算法基础上结合有效性指标BWP对聚类结果进行分析,从而解决了最佳有效聚类数目无法事先确定的不足。理论研究与实验结果表明所提方法的聚类结果具有更好的稳定性和可行性。 展开更多
关键词 k-means算法 初始中心 聚类数 基于密度
在线阅读 下载PDF
一种基于密度的K-means算法研究 被引量:44
3
作者 张琳 陈燕 +1 位作者 汲业 张金松 《计算机应用研究》 CSCD 北大核心 2011年第11期4071-4073,4085,共4页
针对传统K-means算法必须事先确定聚类数目以及对初始聚类中心的选取比较敏感的缺陷,采用基于密度的思想,通过设定Eps邻域以及Eps邻域内至少包含的对象数minpts来排除孤立点,并将不重复的核心点作为初始聚类中心;采用类内距离和类间距... 针对传统K-means算法必须事先确定聚类数目以及对初始聚类中心的选取比较敏感的缺陷,采用基于密度的思想,通过设定Eps邻域以及Eps邻域内至少包含的对象数minpts来排除孤立点,并将不重复的核心点作为初始聚类中心;采用类内距离和类间距离的比值作为准则评价函数,将准则函数取得最小值时的聚类数作为最佳聚类数,这些改进有效地克服了K-means算法的不足。最后通过几个实例介绍了改进后算法的具体应用,实例表明改进后的算法比原算法有更高的聚类准确性,更能实现类内紧密类间远离的聚类效果。 展开更多
关键词 k-means算法 基于密度 类内距离 类间距离
在线阅读 下载PDF
基于平均密度优化初始聚类中心的k-means算法 被引量:32
4
作者 邢长征 谷浩 《计算机工程与应用》 CSCD 2014年第20期135-138,共4页
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来... 现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。 展开更多
关键词 k-means算法 聚类中心 平均密度 孤立点 收敛
在线阅读 下载PDF
密度K-means算法在认知重评脑功能连接中的应用 被引量:3
5
作者 邹凌 徐逸 周仁来 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期841-846,共6页
为考察大脑在处理加工不同效价的情绪图片时其脑功能区域的联系与差异,提出一种能更精确地提取出相对激活较弱的功能连接区域的方法.首先提出一种基于密度思想的K-means算法并应用于脑功能连接分析,提取具有功能连接的脑组织结构模式;... 为考察大脑在处理加工不同效价的情绪图片时其脑功能区域的联系与差异,提出一种能更精确地提取出相对激活较弱的功能连接区域的方法.首先提出一种基于密度思想的K-means算法并应用于脑功能连接分析,提取具有功能连接的脑组织结构模式;然后引入聚合指数指标客观评判激活脑区定位的准确度,并与独立成分分析方法的处理结果进行对比;最后从体素的激活强度和激活脑区的定位精度等方面入手,论证了基于密度思想的K-means算法在脑功能连接分析上的优势.实验结果表明,情绪刺激加工的过程中,脑区较为明显的激活区主要分布在前额叶、扣带回及下丘脑附近,为后续临床观察及诊断提供了一种较为可靠的方法和思路. 展开更多
关键词 功能连接 认知重评 密度k-means算法 独立成分分析
在线阅读 下载PDF
密度峰值优化初始中心的K-means算法 被引量:7
6
作者 李敏 张桂珠 《计算机应用与软件》 2017年第3期212-217,共6页
K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定。为此,提出一种快速密度峰值搜索算法CFSFDP(clustering by fast search and find of density peaks)优化初始中心的K-means算法。首先针对CFSFDP算法中截断距离的选取影响局... K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定。为此,提出一种快速密度峰值搜索算法CFSFDP(clustering by fast search and find of density peaks)优化初始中心的K-means算法。首先针对CFSFDP算法中截断距离的选取影响局部密度的计算这一缺点,提出用动力学中的势能替换数据点的局部密度;在此基础上,利用改进的CFSFDP算法选取初始聚类中心,实现K-means聚类。在UCI数据集和人工模拟数据集上的测试结果表明,优化后的新算法具有更好的聚类结果。 展开更多
关键词 k-means算法CFSFDP算法 密度峰值 引力势能
在线阅读 下载PDF
一种融合K-means和快速密度峰值搜索算法的聚类方法 被引量:13
7
作者 盛华 张桂珠 《计算机应用与软件》 CSCD 2016年第10期260-264,269,共6页
K-means算法的初始聚类中心是随机选取的,不同的初始中心输入会得出不同的聚类结果。针对K-means算法存在的问题,提出一种融合K-means算法与聚类的快速搜索和发现密度峰算法的聚类算法(K-CBFSAFODP)。该算法是这样考虑的:类簇中心被具... K-means算法的初始聚类中心是随机选取的,不同的初始中心输入会得出不同的聚类结果。针对K-means算法存在的问题,提出一种融合K-means算法与聚类的快速搜索和发现密度峰算法的聚类算法(K-CBFSAFODP)。该算法是这样考虑的:类簇中心被具有较低局部密度的邻居点包围,且与具有更高密度的任何点都有相对较大的距离,以此来刻画聚类中心;再运用K-means算法进行迭代聚类,弥补了K-means聚类中心随机选取导致容易陷入局部最优的缺点;并且引入了熵值法用来计算距离,从而实现优化聚类。在UCI数据集和人工模拟数据集上的实验表明,融合算法不仅能得到较好的聚类结果,而且聚类很稳定,同时也有较快的收敛速度,证实了该融合算法的可行性。 展开更多
关键词 聚类 k-means算法 CBFSAFODP算法 初始聚类中心 密度 信息熵
在线阅读 下载PDF
基于DPK-means与隶属因子的低压配电台区拓扑识别方法
8
作者 梁婧超 魏斌 +1 位作者 孟润泉 谭非同 《电网与清洁能源》 北大核心 2025年第6期73-82,共10页
针对低压配电台区内拓扑结构不清晰,台区内层级关系不明确的问题,提出了一种基于密度峰值K均值聚类算法(density peak K-means,DPK-means)与隶属因子的低压配电台区全层级网络拓扑识别方法。采用Z-Score标准化方法对特征的差异进行放大... 针对低压配电台区内拓扑结构不清晰,台区内层级关系不明确的问题,提出了一种基于密度峰值K均值聚类算法(density peak K-means,DPK-means)与隶属因子的低压配电台区全层级网络拓扑识别方法。采用Z-Score标准化方法对特征的差异进行放大;采用DPK-means对台区内用户的相位进行区分识别;提出一种基于电压曲线相似度的隶属因子计算方法,识别出台区内“分支箱—表箱—用户”的隶属关系,从而实现低压配电台区“配电变压器—分支箱—表箱—用户—相位”的全层级拓扑识别;在实际算例模型中分析验证了所提方法的有效性。 展开更多
关键词 低压配电台区 拓扑识别 密度峰值K均值聚类算法(density peak k-means DPk-means) 隶属因子
在线阅读 下载PDF
融合最近邻矩阵与局部密度的自适应K-means聚类算法 被引量:6
9
作者 艾力米努尔·库尔班 谢娟英 姚若侠 《计算机科学与探索》 CSCD 北大核心 2023年第2期355-366,共12页
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启... 针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。 展开更多
关键词 自适应k-means聚类算法 密度峰值原则 最邻近吸收原则 局部密度
在线阅读 下载PDF
基于全局性分裂算子的进化K-means算法 被引量:3
10
作者 王留正 何振峰 《计算机应用》 CSCD 北大核心 2012年第11期3005-3008,共4页
进化算法可以有效地克服K-means对初始聚类中心敏感的缺陷,提高了聚类性能。在进化K-means聚类算法(F-EAC)的基础上,针对其变异操作——簇分裂算子的随机性与局部性,提出了两个全局性分裂算子。结合最大最小距离的思想,利用待分裂簇的... 进化算法可以有效地克服K-means对初始聚类中心敏感的缺陷,提高了聚类性能。在进化K-means聚类算法(F-EAC)的基础上,针对其变异操作——簇分裂算子的随机性与局部性,提出了两个全局性分裂算子。结合最大最小距离的思想,利用待分裂簇的周边簇信息来指导簇分裂初始点的选择,使簇的分裂更有利于全局划分,以进一步提高进化聚类的有效性。实验结果表明,基于全局性分裂算子的算法在类数发现及聚类精度方面均优于F-EAC。 展开更多
关键词 k-means 进化算法 变异算子 全局分裂 最大最小距离
在线阅读 下载PDF
基于密度信息熵的K-Means算法在客户细分中的应用 被引量:10
11
作者 蒲晓川 黄俊丽 +1 位作者 祁宁 宋长松 《吉林大学学报(理学版)》 CAS 北大核心 2021年第5期1245-1251,共7页
为解决企业客户价值体现问题,提出一种TFA客户细分改进模型,以客户发展空间T、购买频次F和平均购买额A为指标,充分体现客户的价值和发展空间.首先,引入局部密度值ρ和信息熵H,改进K-means聚类算法,以优化传统K-means聚类方法初始聚类中... 为解决企业客户价值体现问题,提出一种TFA客户细分改进模型,以客户发展空间T、购买频次F和平均购买额A为指标,充分体现客户的价值和发展空间.首先,引入局部密度值ρ和信息熵H,改进K-means聚类算法,以优化传统K-means聚类方法初始聚类中心的选取问题;其次,通过搭建机器学习框架,对选取人工数据集及真实数据集进行聚类实验,验证模型的有效性.实验结果表明,该模型能有效分类客户,充分反映客户价值及其发展空间,并通过改进聚类算法提升了算法效率. 展开更多
关键词 客户分类 客户发展空间 k-means算法 初始聚类中心 密度信息熵
在线阅读 下载PDF
基于密度的K-means算法在轨迹数据聚类中的优化 被引量:8
12
作者 郝美薇 戴华林 郝琨 《计算机应用》 CSCD 北大核心 2017年第10期2946-2951,共6页
针对传统的K-means算法无法预先明确聚类数目,对初始聚类中心选取敏感且易受离群孤点影响导致聚类结果稳定性和准确性欠佳的问题,提出一种改进的基于密度的K-means算法。该算法首先基于轨迹数据分布密度和增加轨迹数据关键点密度权值的... 针对传统的K-means算法无法预先明确聚类数目,对初始聚类中心选取敏感且易受离群孤点影响导致聚类结果稳定性和准确性欠佳的问题,提出一种改进的基于密度的K-means算法。该算法首先基于轨迹数据分布密度和增加轨迹数据关键点密度权值的方式选取高密度的轨迹数据点作为初始聚类中心进行K-means聚类,然后结合聚类有效函数类内类外划分指标对聚类结果进行评价,最后根据评价确定最佳聚类数目和最优聚类划分。理论研究与实验结果表明,该算法能够更好地提取轨迹关键点,保留关键路径信息,且与传统的K-means算法相比,聚类准确性提高了28个百分点,与具有噪声的基于密度的聚类算法相比,聚类准确性提高了17个百分点。所提算法在轨迹数据聚类中具有更好的稳定性和准确性。 展开更多
关键词 k-means算法 基于密度 车辆活动特征 密度权值 初始聚类中心 类内类外划分指标
在线阅读 下载PDF
一种改进的k-means初始聚类中心选取算法 被引量:94
13
作者 韩凌波 王强 +1 位作者 蒋正锋 郝志强 《计算机工程与应用》 CSCD 北大核心 2010年第17期150-152,共3页
在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个缺点,提出一种优化初始聚类中心的算法。该算法通过计算每个数据对象的密度参数,然后选取k个处于高密度分布的点作为初始聚类中心。实验表明,在聚类类别... 在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个缺点,提出一种优化初始聚类中心的算法。该算法通过计算每个数据对象的密度参数,然后选取k个处于高密度分布的点作为初始聚类中心。实验表明,在聚类类别数给定的情况下,通过用标准的UCI数据库进行实验比较,发现采用改进后方法选取的初始类中心的k-means算法比随机选取初始聚类中心算法有相对较高的准确率和稳定性。 展开更多
关键词 k-means算法 聚类中心 密度参数
在线阅读 下载PDF
一种新的k-means聚类中心选取算法 被引量:20
14
作者 黄敏 何中市 +1 位作者 邢欣来 陈英 《计算机工程与应用》 CSCD 北大核心 2011年第35期132-134,共3页
在2010年提出已有的k-means聚类中心选取算法的基础上进行改进。通过计算样本间的距离求出每个样本的密度参数,选取最大密度参数值所对应的样本作为初始聚类中心。当最大密度参数值不惟一时,提出合理选取最大密度参数值的解决方案,依次... 在2010年提出已有的k-means聚类中心选取算法的基础上进行改进。通过计算样本间的距离求出每个样本的密度参数,选取最大密度参数值所对应的样本作为初始聚类中心。当最大密度参数值不惟一时,提出合理选取最大密度参数值的解决方案,依次求出k个初始聚类中心点,由此提出了一种新的k-means聚类中心选取算法。实验证明,提出的算法与对比算法相比具有更高的准确率。 展开更多
关键词 k-means算法 聚类中心 密度参数
在线阅读 下载PDF
K-means算法的初始聚类中心的优化 被引量:75
15
作者 赖玉霞 刘建平 《计算机工程与应用》 CSCD 北大核心 2008年第10期147-149,共3页
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点... 传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。 展开更多
关键词 聚类 k-means算法 密度 聚类中心 密度区域
在线阅读 下载PDF
基于改进K-means算法的微博舆情分析研究 被引量:17
16
作者 谢修娟 李香菊 莫凌飞 《计算机工程与科学》 CSCD 北大核心 2018年第1期155-158,共4页
为避免初始聚类中心选取到孤立点容易导致聚类结果陷入局部最优的不足,提出一种基于密度的K-means(聚类算法)初始聚类中心选择方法。该方法首先计算每个数据对象与其它数据对象间的平均相似度,找出平均相似度高于某固定阈值的对象视作... 为避免初始聚类中心选取到孤立点容易导致聚类结果陷入局部最优的不足,提出一种基于密度的K-means(聚类算法)初始聚类中心选择方法。该方法首先计算每个数据对象与其它数据对象间的平均相似度,找出平均相似度高于某固定阈值的对象视作核心对象,再从核心对象中选取彼此间最不相似的作为初始聚类中心。通过自构建的新浪微博抓取工具,分别抓取不同类别的数千条数据,经过分词、预处理及权重计算后,用改进的K-means算法对其进行聚类分析,查准/全率较传统的K-means算法要稳定,聚类的平均时间也得到缩短。实验结果表明,改进后的算法在微博聚类中有更高的准确性和稳定性,有利于从大量的微博数据中发现热点舆情。 展开更多
关键词 微博 聚类中心 k-means聚类算法 密度
在线阅读 下载PDF
K-means初始聚类中心的选择算法 被引量:35
17
作者 郑丹 王潜平 《计算机应用》 CSCD 北大核心 2012年第8期2186-2188,2192,共4页
K-means算法随机选取初始聚类中心,容易造成聚类准确率低且聚类结果不稳定。针对这一问题,提出一种初始聚类中心的选择算法。通过k-dist的差值(DK)图分析,确定数据点在k-dist图上的位置,选择主要密度水平曲线上k-dist值最小的点作为初... K-means算法随机选取初始聚类中心,容易造成聚类准确率低且聚类结果不稳定。针对这一问题,提出一种初始聚类中心的选择算法。通过k-dist的差值(DK)图分析,确定数据点在k-dist图上的位置,选择主要密度水平曲线上k-dist值最小的点作为初始聚类中心。实验证明,改进算法选择的初始聚类中心唯一,聚类结果稳定,聚类准确率高,迭代次数少。 展开更多
关键词 聚类 k-means算法 k-dist图 k-dist的差值图 密度
在线阅读 下载PDF
一种基于广度优先搜索的K-means初始化算法 被引量:7
18
作者 张忠平 王爱杰 陈丽萍 《计算机工程与应用》 CSCD 北大核心 2008年第27期159-161,共3页
K-means算法是在现实应用中非常广泛的聚类算法,K-means算法对初始中心的选择非常敏感,对已存在的有代表性的初始算法进行了研究,提出了一种基于广度优先搜索的K-means初始化算法。该算法综合考虑了密度与距离因素,选择初始点。分析表... K-means算法是在现实应用中非常广泛的聚类算法,K-means算法对初始中心的选择非常敏感,对已存在的有代表性的初始算法进行了研究,提出了一种基于广度优先搜索的K-means初始化算法。该算法综合考虑了密度与距离因素,选择初始点。分析表明该算法选择的初始点非常接近期望的中心点。 展开更多
关键词 k-means算法 广度优先搜索 密度估计 初始化
在线阅读 下载PDF
一种优化初始中心的K-means粗糙聚类算法 被引量:14
19
作者 姚跃华 史秀岭 《计算机工程与应用》 CSCD 北大核心 2010年第34期126-128,共3页
针对K-means算法的不足,提出了一种优化初始中心的聚类算法。首先,采用密度敏感的相似性度量来计算对象的密度,基于对象之间的距离和对象的邻域,选择相互距离尽可能远的数据点作为初始聚类中心。然后,采用基于粗糙集的K-means聚类算法... 针对K-means算法的不足,提出了一种优化初始中心的聚类算法。首先,采用密度敏感的相似性度量来计算对象的密度,基于对象之间的距离和对象的邻域,选择相互距离尽可能远的数据点作为初始聚类中心。然后,采用基于粗糙集的K-means聚类算法处理边界对象,同时利用均衡化函数自动生成聚类数目。实验表明,算法具有较好的聚类效果和综合性能。 展开更多
关键词 聚类 k-means算法 初始中心 密度 粗糙集
在线阅读 下载PDF
融入密度和距离的K-means初始簇中心优选方法研究 被引量:6
20
作者 冯勇 张学理 +1 位作者 王嵘冰 徐红艳 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1805-1808,共4页
K-means算法随机选取初始簇中心易导致聚类不稳定、准确率低等问题.为了解决上述问题,提出融入密度和距离的K-means初始簇中心优选方法.该方法首先选取距离最远的两个样本点进行贪心策略的密度聚类,形成两个临时初始簇,接着不断选取距... K-means算法随机选取初始簇中心易导致聚类不稳定、准确率低等问题.为了解决上述问题,提出融入密度和距离的K-means初始簇中心优选方法.该方法首先选取距离最远的两个样本点进行贪心策略的密度聚类,形成两个临时初始簇,接着不断选取距临时初始簇质心距离乘积最大值点进行密度聚类,直到形成K个临时初始簇,最后在每个簇中选取核心点作为初始簇中心.在Letter数据集进行实验,证明所选取初始簇中心进行K-means聚类具有更好的稳定性、更高的准确率. 展开更多
关键词 k-means算法 密度 贪心策略 最大距离 初始簇中心
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部