期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于宽深超分辨率网络的信道估计方法
1
作者 谢朋 钱蓉蓉 任文平 《电讯技术》 北大核心 2024年第1期132-138,共7页
在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resol... 在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resolution,WDSR)网络的信道估计方法,把导频值通过最小二乘估计(Least Squares,LS)初步插值,再通过WDSR网络再次放大重构整个信道的响应。将信道估计插值上采样替换成初步插值和图像超分辨率上采样两步。仿真结果表明,与超分辨率卷积神经网络(Super-resolution Convolutional Neural Network,SRCNN)信道估计算法相比,在不同种类的信道以及导频数下WDSR信道估计方法均方误差性能提升约4.6 dB。 展开更多
关键词 OFDM系统 信道估计 分辨率(wdsr)网络 分辨率卷积神经网络(SRCNN)
在线阅读 下载PDF
高效单图像超分辨率重建:深监督对称蒸馏网络 被引量:3
2
作者 毛盼娣 徐道连 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第6期57-64,I0002,共9页
过去几十年,卷积神经网络(Convolutional Neural Networks,CNNs)在单图像超分辨率(Single Image Super-Resolution,SISR)方面取得了明显的进展.现在大部分基于CNNs的方法都致力于构造新的架构去提升重建性能,这通常依赖大量计算和存储成... 过去几十年,卷积神经网络(Convolutional Neural Networks,CNNs)在单图像超分辨率(Single Image Super-Resolution,SISR)方面取得了明显的进展.现在大部分基于CNNs的方法都致力于构造新的架构去提升重建性能,这通常依赖大量计算和存储成本,难以应用于移动设备.提出了一种新颖的基于深监督对称蒸馏网络的高效单图像超分辨率重建方法(Deeply-Supervised Symmetry Distillation Network,DSSD),通过构造高频特征递归模块(High-frequency Feature Recursive Module,HFRM)和对称退化模块(Symmetry Degradation Module,SDM)缓解教师网络中提取高分辨率(High-Resolution,HR)高频信息不够准确这一问题.为了约束教师网络中提取的高频特征,采用深监督方法使教师网络蒸馏的知识与学生网络互补.在DIV2K数据集上的实验表明,DSSD有效增强了单图像超分辨率(SISR)的性能,HFRM和SDM的引入能够有效帮助DSSD提取更多图像高频细节. 展开更多
关键词 监督对称蒸馏网络 分辨率 教师网络 高频特征递归模块 对称退化模块 特权信息
在线阅读 下载PDF
基于多通道极深卷积神经网络的图像超分辨率算法 被引量:8
3
作者 黄伟 冯晶晶 黄遥 《计算机工程》 CAS CSCD 北大核心 2020年第9期242-247,253,共7页
卷积神经网络(CNN)在单幅图像超分辨率重构中存在网络结构较浅、可提取特征较少和细节重构效果不显著等问题。为此,提出一种基于多通道极深CNN的图像超分辨率算法,分别对原始低分辨率图像进行3种插值和3种锐化等预处理操作,并以多通道... 卷积神经网络(CNN)在单幅图像超分辨率重构中存在网络结构较浅、可提取特征较少和细节重构效果不显著等问题。为此,提出一种基于多通道极深CNN的图像超分辨率算法,分别对原始低分辨率图像进行3种插值和3种锐化等预处理操作,并以多通道图像作为CNN的输入层数据。通过重新调整卷积核大小以加深网络结构,使得输入层数据在极深的CNN模型中训练重构高分辨率图像。实验结果表明,与Bicubic、SRCNN和MC-SRCNN等算法相比,该算法的峰值信噪比和视觉效果均较好。 展开更多
关键词 卷积神经网络 分辨率重构 多通道图像 卷积核 网络
在线阅读 下载PDF
基于注意力和宽激活密集残差网络的图像超分辨率重建 被引量:3
4
作者 寇旗旗 李超 +3 位作者 程德强 陈亮亮 马浩辉 张剑英 《光学精密工程》 EI CAS CSCD 北大核心 2023年第15期2273-2286,共14页
针对全局和局部高低频空间信息利用不足而导致重建图像纹理细节模糊的问题,提出一种基于注意力和宽激活密集残差网络的图像超分辨率重建模型。首先,四个不同尺度且平行的卷积核被用来充分提取图像低频特征作为空间特征转换的先验信息。... 针对全局和局部高低频空间信息利用不足而导致重建图像纹理细节模糊的问题,提出一种基于注意力和宽激活密集残差网络的图像超分辨率重建模型。首先,四个不同尺度且平行的卷积核被用来充分提取图像低频特征作为空间特征转换的先验信息。在深层特征映射模块中构建融合注意力的宽激活残差块,并利用低频先验信息来引导高频特征的提取。该宽激活残差块通过扩大激活函数前的特征通道数来提取更深层次的特征图,且所构造的全局和局部残差连接在加强残差块和网络特征前向传播的同时,在不增加参数情况下使得所提取特征的多样性更加丰富。最后,对得到的特征图进行上采样和重建以得到清晰的高分辨率图像。实验表明,所提算法在BSD100数据集上4倍超分辨率时,相比LatticeNet模型的PSNR指标提升了0.14 dB,SSIM提升了0.001,在主观视觉方面,重建出的图像局部纹理细节也更加清晰。 展开更多
关键词 残差网络 分辨率 激活 注意力机制 密集连接
在线阅读 下载PDF
基于深度学习的红外夜视图像超分辨率重建 被引量:9
5
作者 王丹 陈亮 《红外技术》 CSCD 北大核心 2019年第10期963-969,共7页
针对红外夜视图像对比度低、成像质量不高的问题,提出适合红外夜视图像超分辨率重建方法。在自然图像超分辨率重建模型的基础上增加基于Retinex的对比度增强预处理步骤,并对网络模型做如下改进:构建超深卷积神经网络学习低分辨率图像与... 针对红外夜视图像对比度低、成像质量不高的问题,提出适合红外夜视图像超分辨率重建方法。在自然图像超分辨率重建模型的基础上增加基于Retinex的对比度增强预处理步骤,并对网络模型做如下改进:构建超深卷积神经网络学习低分辨率图像与高分辨率图像之间的映射关系,增大感受野,提升网络学习能力;仅学习高低分辨率图像间的差值信息加速网络收敛。针对高分辨率红外夜视图像不易获得,数据量较少的问题,利用迁移学习理论,使用少量的高分辨率红外夜视图像为目标样本,对自然图像超分辨率重建模型进行微调,得到适合红外夜视图像重建的网络权重模型。实验结果证明:使用该方法得到的红外夜视图像信息丰富,层次分明,具有良好的视觉效果。 展开更多
关键词 红外夜视图像 分辨率 预处理 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部