期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应宽度学习算法的城市污水处理污泥膨胀识别 被引量:1
1
作者 何政 李杰 +5 位作者 赵楠 陈行行 阜崴 顾剑 韩红桂 刘峥 《控制工程》 CSCD 北大核心 2024年第10期1856-1861,共6页
针对污水处理过程的污泥膨胀难以精准识别的问题,提出了一种基于自适应宽度学习算法(adaptive broad learning algorithm,ABLA)的污泥膨胀识别方法。首先,结合城市污水处理过程的运行数据,采用主元分析法选取与污泥体积指数(sludge volu... 针对污水处理过程的污泥膨胀难以精准识别的问题,提出了一种基于自适应宽度学习算法(adaptive broad learning algorithm,ABLA)的污泥膨胀识别方法。首先,结合城市污水处理过程的运行数据,采用主元分析法选取与污泥体积指数(sludge volume index,SVI)相关的特征变量;其次,建立了一种基于ABLA的污泥膨胀识别模型,利用自适应伪逆算法更新模型参数,提高了识别精度,并验证了模型的收敛性;最后,将所提模型应用于实际的污水处理过程中,利用污水处理厂的实际运行数据对其进行实验验证。实验结果表明,基于ABLA的污泥膨胀识别模型能够实现污泥膨胀的精准识别。 展开更多
关键词 城市污水处理 污泥膨胀 自适应宽度学习算法 识别
在线阅读 下载PDF
融合集合经验模态分解与宽度学习的齿轮箱故障预警方法 被引量:9
2
作者 杨锡运 邓子琦 康宁 《计算机集成制造系统》 EI CSCD 北大核心 2022年第6期1835-1843,共9页
为实现风力发电机齿轮箱的预测性维护,针对齿轮箱油温超温故障,提出一种基于集合经验模态分解(EEMD)和宽度学习算法的融合预警模型。以健康状态下的齿轮箱数据为判别基准,首先对齿轮箱油温时序信号进行EEMD分解得到时频特性,再采用宽度... 为实现风力发电机齿轮箱的预测性维护,针对齿轮箱油温超温故障,提出一种基于集合经验模态分解(EEMD)和宽度学习算法的融合预警模型。以健康状态下的齿轮箱数据为判别基准,首先对齿轮箱油温时序信号进行EEMD分解得到时频特性,再采用宽度学习算法,利用数据采集与监视控制系统数据对齿轮箱进行建模,分别以马氏距离和重构油温曲线与真实油温曲线的关联度为指标,从时间维度和相关变量维度评价齿轮箱的健康程度。通过计算两种算法的交叉熵将二者的预警结果融合,从而兼顾预警方法的准确性和快速性。对实际风场中齿轮箱油温超温故障发生前后记录的数据进行仿真分析,验证了EEMD变点与宽度学习算法的融合方法在齿轮箱油温超温早期故障预警上的可行性。 展开更多
关键词 风电机组 宽度学习算法 集合经验模态分解 交叉熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部