期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用WDCNN-GRU模型的变转速轴承故障诊断技术研究
1
作者 刘馨雅 马超 +1 位作者 黄民 张占一 《组合机床与自动化加工技术》 北大核心 2025年第1期138-142,149,共6页
针对变转速工况下,为了提高轴承故障诊断的效率、准确度和稳定性,提出一种基于宽卷积核门控循环的混合神经网络模型。首先,采用计算阶次跟踪对原始信号做角域重采样处理,消除变转速带来的信号不具备周期性、特征混叠、频率偏移等问题;然... 针对变转速工况下,为了提高轴承故障诊断的效率、准确度和稳定性,提出一种基于宽卷积核门控循环的混合神经网络模型。首先,采用计算阶次跟踪对原始信号做角域重采样处理,消除变转速带来的信号不具备周期性、特征混叠、频率偏移等问题;然后,通过宽卷积核卷积网络提取角域信号特征,结合门控循环神经网络捕捉时序信息,使信号特征挖掘更加全面。为验证该方法的有效性,从多个方面结合多个模型进行对比实验。实验结果表明,所提模型的平均准确率均高于对比模型,具备高准确率、高效率及稳定性的特点。 展开更多
关键词 变转速轴承 故障诊断 宽卷积核网络 门控循环网络
在线阅读 下载PDF
跳连接变分自编码器与CNN相结合的滚动轴承故障诊断方法
2
作者 张洪亮 余其源 王锐 《机械科学与技术》 CSCD 北大核心 2024年第4期681-689,共9页
针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高... 针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高生成样本的特征多样性;其次,构建宽核深度卷积网络诊断模型,该模型可以提高从振动信号中提取故障特征的能力;最后,经生成样本扩充的数据集作为模型输入,提高训练集包含的特征信息量,实现小样本下的故障诊断。实验分析表明,所提方法在小样本情形下能生成有效的伪样本并具有较高的诊断精度。 展开更多
关键词 故障诊断 跳跃连接变分自编码器 数据生成 深度卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部