A novel framework for parallel subgraph isomorphism on GPUs is proposed, named GPUSI, which consists of GPU region exploration and GPU subgraph matching. The GPUSI iteratively enumerates subgraph instances and solves ...A novel framework for parallel subgraph isomorphism on GPUs is proposed, named GPUSI, which consists of GPU region exploration and GPU subgraph matching. The GPUSI iteratively enumerates subgraph instances and solves the subgraph isomorphism in a divide-and-conquer fashion. The framework completely relies on the graph traversal, and avoids the explicit join operation. Moreover, in order to improve its performance, a task-queue based method and the virtual-CSR graph structure are used to balance the workload among warps, and warp-centric programming model is used to balance the workload among threads in a warp. The prototype of GPUSI is implemented, and comprehensive experiments of various graph isomorphism operations are carried on diverse large graphs. The experiments clearly demonstrate that GPUSI has good scalability and can achieve speed-up of 1.4–2.6 compared to the state-of-the-art solutions.展开更多
Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of...Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of almost all types of rocks, A nonlinear Hock-Brown failure criterion is employed to estimate the supporting pressures of shallow tunnels in limit analysis framework. Two failure mechanisms are proposed for calculating the work rate of extemal force and the internal energy dissipation. A tangential line to the nonlinear failure criterion is used to formulate the supporting pressure problem as a nonlinear programming problem. The objective function formulated in this way is minimized with respect to the failure mechanism and the location of tangency point. In order to assess the validity, the supporting pressures for the proposed failure mechanisms are calculated and compared with each other, and the present results are compared with previously published solutions when the nonlinear criterion is reduced to linear criterion. The agreement supports the validity of the proposed failure mechanisms. An experiment is conducted to investigate the influences of the nonlinear criterion on collapse shape and supporting pressures of shallow tunnels.展开更多
基金Projects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProject supported by Funds for New Century Excellent Talents in University of ChinaProjects(2012AA01A301,2012AA010901)supported by the National High Technology Research and Development Program of China
文摘A novel framework for parallel subgraph isomorphism on GPUs is proposed, named GPUSI, which consists of GPU region exploration and GPU subgraph matching. The GPUSI iteratively enumerates subgraph instances and solves the subgraph isomorphism in a divide-and-conquer fashion. The framework completely relies on the graph traversal, and avoids the explicit join operation. Moreover, in order to improve its performance, a task-queue based method and the virtual-CSR graph structure are used to balance the workload among warps, and warp-centric programming model is used to balance the workload among threads in a warp. The prototype of GPUSI is implemented, and comprehensive experiments of various graph isomorphism operations are carried on diverse large graphs. The experiments clearly demonstrate that GPUSI has good scalability and can achieve speed-up of 1.4–2.6 compared to the state-of-the-art solutions.
基金Foundation item: Project(2013CB036004) supported by the National Basic Research Program of China Project(51178468) supported by the National Natural Science Foundation of China
文摘Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of almost all types of rocks, A nonlinear Hock-Brown failure criterion is employed to estimate the supporting pressures of shallow tunnels in limit analysis framework. Two failure mechanisms are proposed for calculating the work rate of extemal force and the internal energy dissipation. A tangential line to the nonlinear failure criterion is used to formulate the supporting pressure problem as a nonlinear programming problem. The objective function formulated in this way is minimized with respect to the failure mechanism and the location of tangency point. In order to assess the validity, the supporting pressures for the proposed failure mechanisms are calculated and compared with each other, and the present results are compared with previously published solutions when the nonlinear criterion is reduced to linear criterion. The agreement supports the validity of the proposed failure mechanisms. An experiment is conducted to investigate the influences of the nonlinear criterion on collapse shape and supporting pressures of shallow tunnels.