Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and soft...Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.展开更多
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金Projects(61202004,61272084)supported by the National Natural Science Foundation of ChinaProjects(2011M500095,2012T50514)supported by the China Postdoctoral Science Foundation+2 种基金Projects(BK2011754,BK2009426)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(12KJB520007)supported by the Natural Science Fund of Higher Education of Jiangsu Province,ChinaProject(yx002001)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.