A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input ...A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.展开更多
The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freun...The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freundlich adsorption models were applied to describing the equilibrium isotherms, and isotherm constants were determined. The kinetics of the adsorption with respect to the initial Ca(II) ions concentration, temperature and pH was investigated. The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The results show that the experimental data fit well to the Langmuir isotherms with a high correlation coefficient (R2). The pseudo-second-order rate expression provides the best fitting kinetic model. The pseudo second-order kinetic model is indicated with the activation energy of 26.22 kJ/mol and 6.16 kJ/mol for KCTS and HKCTS, respectively. It is suggested that the overall rate of adsorption of Ca( II ) ions is likely to be controlled by the chemical process.展开更多
文摘A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.
基金Project(20376085) supported by the National Natural Science Foundation of China
文摘The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freundlich adsorption models were applied to describing the equilibrium isotherms, and isotherm constants were determined. The kinetics of the adsorption with respect to the initial Ca(II) ions concentration, temperature and pH was investigated. The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The results show that the experimental data fit well to the Langmuir isotherms with a high correlation coefficient (R2). The pseudo-second-order rate expression provides the best fitting kinetic model. The pseudo second-order kinetic model is indicated with the activation energy of 26.22 kJ/mol and 6.16 kJ/mol for KCTS and HKCTS, respectively. It is suggested that the overall rate of adsorption of Ca( II ) ions is likely to be controlled by the chemical process.