期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Vapnik-Chervonenkis泛化界的极限学习机模型复杂性控制
被引量:
4
1
作者
刘学艺
宋春跃
李平
《控制理论与应用》
EI
CAS
CSCD
北大核心
2014年第5期644-653,共10页
模型复杂性是决定学习机器泛化性能的关键因素,对其进行合理的控制是模型选择的重要原则.极限学习机(extreme learning machine,ELM)作为一种新的机器学习算法,表现出了优越的学习性能.但对于如何在ELM的模型选择过程中合理地度量和控...
模型复杂性是决定学习机器泛化性能的关键因素,对其进行合理的控制是模型选择的重要原则.极限学习机(extreme learning machine,ELM)作为一种新的机器学习算法,表现出了优越的学习性能.但对于如何在ELM的模型选择过程中合理地度量和控制其模型复杂性这一基本问题,目前尚欠缺系统的研究.本文讨论了基于Vapnik-Chervonenkis(VC)泛化界的ELM模型复杂性控制方法(记作VM),并与其他4种经典模型选择方法进行了系统的比较研究.在人工和实际数据集上的实验表明,与其他4种经典方法相比,VM具有更优的模型选择性能:能选出同时具有最低模型复杂性和最低(或近似最低)实际预测风险的ELM模型.此外,本文也为VC维理论的实际应用价值研究提供了一个新的例证.
展开更多
关键词
VC泛化界
模型复杂性
极限学习机
小样本
实际预测风险
在线阅读
下载PDF
职称材料
题名
基于Vapnik-Chervonenkis泛化界的极限学习机模型复杂性控制
被引量:
4
1
作者
刘学艺
宋春跃
李平
机构
浙江大学航空航天学院
中国计量学院数学系
浙江大学工业控制研究所
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2014年第5期644-653,共10页
基金
国家重点基础研究发展计划"973"资助项目(2009CB320603)
国家自然科学基金资助项目(61273085)
浙江省自然科学基金资助项目(LY14F030020)
文摘
模型复杂性是决定学习机器泛化性能的关键因素,对其进行合理的控制是模型选择的重要原则.极限学习机(extreme learning machine,ELM)作为一种新的机器学习算法,表现出了优越的学习性能.但对于如何在ELM的模型选择过程中合理地度量和控制其模型复杂性这一基本问题,目前尚欠缺系统的研究.本文讨论了基于Vapnik-Chervonenkis(VC)泛化界的ELM模型复杂性控制方法(记作VM),并与其他4种经典模型选择方法进行了系统的比较研究.在人工和实际数据集上的实验表明,与其他4种经典方法相比,VM具有更优的模型选择性能:能选出同时具有最低模型复杂性和最低(或近似最低)实际预测风险的ELM模型.此外,本文也为VC维理论的实际应用价值研究提供了一个新的例证.
关键词
VC泛化界
模型复杂性
极限学习机
小样本
实际预测风险
Keywords
VC generalization bounds
model complexity
extreme learning machine
small sample
real prediction risk
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Vapnik-Chervonenkis泛化界的极限学习机模型复杂性控制
刘学艺
宋春跃
李平
《控制理论与应用》
EI
CAS
CSCD
北大核心
2014
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部