The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which...Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.展开更多
To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory ...To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.展开更多
A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ES...A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.展开更多
In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical ea...In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical earth pressure,lateral earth pressure,deformation behaviors of reinforcements,potential failure surface and deformation behaviors of wall face were studied.Results show that vertical earth pressure is less than theoretical value,the ratio of vertical earth pressure to theoretical value increases nearly linearly with increasing load,and the correlation coefficient of regression equation is 0.92 for the second layer and 0.79 for the fifth layer.The distribution of lateral earth pressure along the wall back is nonlinear and it is less than theoretical value especially when the load imposed at the top of retaining wall is large.Therefore,reinforced gabion retaining wall will be in great safety when current method is adopted.The deformation behaviors of reinforcements both in the third layer and the fifth layer are single-peak distributions,and the position of the maximum strain is behind that determined by 0.3H(Here H refers to the height of retaining wall) method or Rankine theory.Lateral deformation of wall face increases with increasing load,and the largest lateral deformation occurs in the fourth layer,which lead to a bulging in the middle of wall face.展开更多
The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to...The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to provide the fundamental understanding of the stress distribution and degradation mechanism of stone matrix asphalt (SMA) aggregate skeleton. Based on the theoretical analysis, crushing test and superpave gyratory compactor (SGC) test were used to evaluate the degradation behavior of aggregate skeleton of SMA. To verify the laboratory test results, gradation analysis was also conducted for the field materials extracted from SMA pavements after long-time service. The results indicate that the degradation of SMA aggregate skeleton is not random but has fixed internal trend and mechanism. Special rule is found for the graded fine aggregates generated from coarse aggregate breakdown and the variation of 4.75 mm aggregate is found to play a key role in the graded aggregates to form well-balanced skeleton to bear external loading. The variation of 4.75 mm aggregate together with the breakdown ratio of aggregate gradation can be used to characterize the degradation behavior of aggregate skeleton. The crushing test and SGC test are proved to be promising in estimating the degradation behavior of SMA skeleton.展开更多
Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the...Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the effects of discontinuities on cutting characteristics and cutting efficiency. In laboratory tests, five propagation patterns of radial cracks are observed. And in the numerical tests, firstly, it is similar to laboratory tests that cracks ahead of cutters mainly initiate from the crushed zone, and some minor cracks will initiate from joints. The cracks initiating from crushed zones will run through the thinner joints while they will be held back by thick joints. Cracks tend to propagate towards the tips of embedded cracks, and minor cracks will initiate from the tips of embedded cracks, which may result in the decrease of specific area, and disturbing layers play as ‘screens', which will prevent cracks from developing greatly. The peak penetration forces, the consumed energy in the penetration process and the uniaxial compression strength will decrease with the increase of discontinuities. The existence of discontinuities will result in the decrease of the cutting efficiency when the spacing between cutters is 70 mm. Some modifications should be made to improve the efficiency when the rocks containing groups of discontinuities are encountered.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy ...Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.展开更多
Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) ...Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.展开更多
Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not...Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.展开更多
A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into ...A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.展开更多
In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial n...In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.展开更多
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Project(50674014) supported by the National Natural Science Foundation of China
文摘Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.
基金Project(2009B13014) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(IRT1125) supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.
基金Projects(50574091,50774084) supported by the National Natural Science Foundation of China
文摘A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.
基金Project(50778180) supported by the National Natural Science Foundation of ChinaProject(CX2010B049) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘In order to study the engineering behaviors of reinforced gabion retaining wall,laboratory model test was carried out.Cyclic load and unload of five levels(0-50,0-100,0-50,0-200 and 0-250 kPa) were imposed.Vertical earth pressure,lateral earth pressure,deformation behaviors of reinforcements,potential failure surface and deformation behaviors of wall face were studied.Results show that vertical earth pressure is less than theoretical value,the ratio of vertical earth pressure to theoretical value increases nearly linearly with increasing load,and the correlation coefficient of regression equation is 0.92 for the second layer and 0.79 for the fifth layer.The distribution of lateral earth pressure along the wall back is nonlinear and it is less than theoretical value especially when the load imposed at the top of retaining wall is large.Therefore,reinforced gabion retaining wall will be in great safety when current method is adopted.The deformation behaviors of reinforcements both in the third layer and the fifth layer are single-peak distributions,and the position of the maximum strain is behind that determined by 0.3H(Here H refers to the height of retaining wall) method or Rankine theory.Lateral deformation of wall face increases with increasing load,and the largest lateral deformation occurs in the fourth layer,which lead to a bulging in the middle of wall face.
基金Project(51008075) supported by the National Natural Science Foundation of ChinaProject(2006AA11Z110) supported by the National High Technology Research and Development Program of China
文摘The degradation behavior of aggregate skeleton in stone matrix asphalt mixture was investigated based on theoretical analysis, laboratory test and field materials evaluation. A stress-transfer model was established to provide the fundamental understanding of the stress distribution and degradation mechanism of stone matrix asphalt (SMA) aggregate skeleton. Based on the theoretical analysis, crushing test and superpave gyratory compactor (SGC) test were used to evaluate the degradation behavior of aggregate skeleton of SMA. To verify the laboratory test results, gradation analysis was also conducted for the field materials extracted from SMA pavements after long-time service. The results indicate that the degradation of SMA aggregate skeleton is not random but has fixed internal trend and mechanism. Special rule is found for the graded fine aggregates generated from coarse aggregate breakdown and the variation of 4.75 mm aggregate is found to play a key role in the graded aggregates to form well-balanced skeleton to bear external loading. The variation of 4.75 mm aggregate together with the breakdown ratio of aggregate gradation can be used to characterize the degradation behavior of aggregate skeleton. The crushing test and SGC test are proved to be promising in estimating the degradation behavior of SMA skeleton.
基金Project(2013CB035401) supported by the National Basic Research Program of ChinaProject(51174228) supported by the National Natural Science Foundation of China+1 种基金Project(71380100003) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(201304) supported by Open Research Fund of Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines(Hunan University of Science and Technology),China
文摘Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the effects of discontinuities on cutting characteristics and cutting efficiency. In laboratory tests, five propagation patterns of radial cracks are observed. And in the numerical tests, firstly, it is similar to laboratory tests that cracks ahead of cutters mainly initiate from the crushed zone, and some minor cracks will initiate from joints. The cracks initiating from crushed zones will run through the thinner joints while they will be held back by thick joints. Cracks tend to propagate towards the tips of embedded cracks, and minor cracks will initiate from the tips of embedded cracks, which may result in the decrease of specific area, and disturbing layers play as ‘screens', which will prevent cracks from developing greatly. The peak penetration forces, the consumed energy in the penetration process and the uniaxial compression strength will decrease with the increase of discontinuities. The existence of discontinuities will result in the decrease of the cutting efficiency when the spacing between cutters is 70 mm. Some modifications should be made to improve the efficiency when the rocks containing groups of discontinuities are encountered.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金Project(2009GJF10028) supported by Technical Special Pilot Program of ChinaProject(CDJXS11110013) supported by the Fundamental Research Funds for the Central Universities of China
文摘Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.
基金Foundation item: Project(2012CB719803) supported by the National Basic Research Program of China Project(201011159098) supported by the Seed Funding for Basic Research Scheme from The University of Hong Kong, China
文摘Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.
基金Foundation item: Project(NTF 12015) supported by the Scientific Research Foundation for Talent of Shantou University, China Project(PolyU 5320107E) supported by the Research Grants Committee General Research Fund, China
文摘Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.
基金Project(51078176) supported by the National Natural Science Foundation of ChinaProject(JK2010-58) supported by the Construction Science and Technology Research Project in Gansu Province,China
文摘A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.
基金Project(2013CB035402) supported by the National Basic Research Program of ChinaProjects(51105048,51209028) supported by the National Natural Science Foundation of China
文摘In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.