A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into ...A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.展开更多
Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical ...Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.展开更多
基金Project(51078176) supported by the National Natural Science Foundation of ChinaProject(JK2010-58) supported by the Construction Science and Technology Research Project in Gansu Province,China
文摘A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.
基金Project(50975058) supported by the National Natural Science Foundation of China
文摘Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.