期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv5s-SDE的带式输送机煤矸目标检测
被引量:
9
1
作者
张磊
王浩盛
+2 位作者
雷伟强
王斌
林建功
《工矿自动化》
CSCD
北大核心
2023年第4期106-112,共7页
传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改...
传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改进,构建了YOLOv5s-SDE模型,提出了基于YOLOv5s-SDE的带式输送机煤矸目标检测方法。YOLOv5s-SDE模型通过在主干网络中添加压缩和激励(SE)模块,以增强有用特征,抑制无用特征,改善小目标煤矸检测效果;利用深度可分离卷积替换普通卷积,以减少参数量和计算量;将边界框回归损失函数CIoU替换为EIoU,提高了模型的收敛速度和检测精度。消融实验结果表明:YOLOv5sSDE模型对煤矸图像的检测准确率达87.9%,平均精度均值(mAP)达92.5%,检测速度达59.9帧/s,可有效检测煤和矸石,满足实时检测需求;与YOLOv5s模型相比,YOLOv5s-SDE模型的准确率下降2.3%,mAP提升1.3%,参数量减少22.2%,计算量下降24.1%,检测速度提升6.4%。同类改进模型对比实验结果表明,YOLOv5s-STA与YOLOv5s-Ghost模型的检测精度明显偏低,YOLOv5s-SDE模型与YOLOv5s模型及YOLOv5s-CBAM模型的检测效果整体相近,但在运动模糊和低照度情况下,YOLOv5s-SDE模型整体检测效果更优。
展开更多
关键词
煤
矸
目标检测
实时智能煤矸分选
深度学习
YOLOv5s
注意力机制
深度可分离卷积
损失函数
在线阅读
下载PDF
职称材料
题名
基于YOLOv5s-SDE的带式输送机煤矸目标检测
被引量:
9
1
作者
张磊
王浩盛
雷伟强
王斌
林建功
机构
山西大同大学煤炭工程学院
出处
《工矿自动化》
CSCD
北大核心
2023年第4期106-112,共7页
基金
山西省研究生教育创新项目(2021Y739)
2022年大同市科技计划重点研发(高新技术领域)项目(2022005)
+2 种基金
山西大同大学2022年度校级揭榜招标项目(2021ZBZX3)
山西大同大学2021年度产学研专项研究项目(2021CXZ2)
山西大同大学研究生教育创新项目(21CX02,21CX37)。
文摘
传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改进,构建了YOLOv5s-SDE模型,提出了基于YOLOv5s-SDE的带式输送机煤矸目标检测方法。YOLOv5s-SDE模型通过在主干网络中添加压缩和激励(SE)模块,以增强有用特征,抑制无用特征,改善小目标煤矸检测效果;利用深度可分离卷积替换普通卷积,以减少参数量和计算量;将边界框回归损失函数CIoU替换为EIoU,提高了模型的收敛速度和检测精度。消融实验结果表明:YOLOv5sSDE模型对煤矸图像的检测准确率达87.9%,平均精度均值(mAP)达92.5%,检测速度达59.9帧/s,可有效检测煤和矸石,满足实时检测需求;与YOLOv5s模型相比,YOLOv5s-SDE模型的准确率下降2.3%,mAP提升1.3%,参数量减少22.2%,计算量下降24.1%,检测速度提升6.4%。同类改进模型对比实验结果表明,YOLOv5s-STA与YOLOv5s-Ghost模型的检测精度明显偏低,YOLOv5s-SDE模型与YOLOv5s模型及YOLOv5s-CBAM模型的检测效果整体相近,但在运动模糊和低照度情况下,YOLOv5s-SDE模型整体检测效果更优。
关键词
煤
矸
目标检测
实时智能煤矸分选
深度学习
YOLOv5s
注意力机制
深度可分离卷积
损失函数
Keywords
coal gangue target detection
real-time intelligent coal gangue sorting
deep learning
YOLOv5s
attention mechanism
depthwise separable convolution
loss function
分类号
TD634 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv5s-SDE的带式输送机煤矸目标检测
张磊
王浩盛
雷伟强
王斌
林建功
《工矿自动化》
CSCD
北大核心
2023
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部