为了能够准确地判定系统的时间动态特性,提出一种基于设备运行状态信息的实时可靠度算法。该算法从设备的状态特征指标出发,结合贝叶斯(Bayes)方法和KM(Kaplan-Meier)评估器思想,无需对设备失效概率密度函数(Probability Density Functi...为了能够准确地判定系统的时间动态特性,提出一种基于设备运行状态信息的实时可靠度算法。该算法从设备的状态特征指标出发,结合贝叶斯(Bayes)方法和KM(Kaplan-Meier)评估器思想,无需对设备失效概率密度函数(Probability Density Function,PDF)进行估计,也不会因样本太少而引起大的估计误差。以上述方法计算所得到的可靠度作为刀具实际可靠度,对比分析支持向量机(Support Vector Machine,SVM)与反馈神经网络(Back Propagation Neural Network,BPNN)两种方法在不同样本条件下的预测精度。结果表明在大样本条件下,两模型都具有较高的预测精度和较小的预测误差;小样本条件下,BPNN方法预测误差过大而达不到预测的功能,而SVM方法仍能保持较高的预测精度和较小的预测误差,与BPNN相比具有明显的优势。展开更多