期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合位置和实体类别信息的中文命名实体识别 被引量:1
1
作者 杨竣辉 李苏晋 《计算机工程》 北大核心 2025年第3期113-121,共9页
词语作为一种上下文信息在中文命名实体识别(NER)任务中发挥着重要作用。以往基于字符的中文NER方法虽然在一定程度上取得了成功,但仍存在词语信息嵌入方式简单、特征捕捉方式单一,且忽视了潜在词的影响、未能充分利用词语信息的问题。... 词语作为一种上下文信息在中文命名实体识别(NER)任务中发挥着重要作用。以往基于字符的中文NER方法虽然在一定程度上取得了成功,但仍存在词语信息嵌入方式简单、特征捕捉方式单一,且忽视了潜在词的影响、未能充分利用词语信息的问题。针对上述问题,提出一种改进的中文NER方法。首先,通过基于全遮蔽技术的预训练模型RoBERTa-wwm将文本表示为字符级嵌入向量;其次,使用门控空洞卷积神经网络(DGCNN)模型进一步捕捉文本的特征信息;然后,在键值记忆网络(KV-MemNN)模型中采用位置实体类别组合机制(PECM)更有效地融合词语信息并缓解潜在词冲突所带来的影响;最后,利用条件随机场(CRF)模型对预测结果进行约束得到最佳标签序列。实验结果表明,该方法在Weibo、MSRA和Resume数据集上的F1值分别达到71.82%、95.00%和96.14%,相比于融合词语信息的FLAT模型分别提升了11.50、0.88、0.69百分点,同时在不同实体上的识别表现整体优于RoBERTa-wwm+CRF和Lattice LSTM模型。此外,通过预训练模型的对比和消融实验进一步证明了KV-MemNN和RoBERTa-wwm模型的有效性。 展开更多
关键词 命名实体识别 键值记忆网络 词语信息 位置信息 实体类别信息
在线阅读 下载PDF
实体类别信息增强的命名实体识别算法 被引量:2
2
作者 刘明辉 唐望径 +4 位作者 许斌 仝美涵 王黎明 钟琦 徐剑军 《应用科学学报》 CAS CSCD 北大核心 2023年第1期1-9,共9页
中文命名实体识别(named entity recognition, NER)字符级别模型会忽略句子中词语的信息,为此提出了一种基于知识图谱中实体类别信息增强的中文NER方法。首先,使用分词工具对训练集进行分词,选出所有可能的词语构建词表;其次,利用通用... 中文命名实体识别(named entity recognition, NER)字符级别模型会忽略句子中词语的信息,为此提出了一种基于知识图谱中实体类别信息增强的中文NER方法。首先,使用分词工具对训练集进行分词,选出所有可能的词语构建词表;其次,利用通用知识图谱检索词表中实体的类别信息,并以简单有效的方式构建与字符相关的词集,根据词集中实体对应的类别信息生成实体类别信息集合;最后,采用词嵌入的方法将类别信息的集合转换成嵌入与字符嵌入拼接,以此丰富嵌入层生成的特征。所提出的方法可以作为嵌入层扩充特征多样性的模块使用,也可与多种编码器-解码器的模型结合使用。在微软亚洲研究院提出的中文NER数据集上的实验展现了该模型的优越性,相较于双向长短期记忆网络与双向长短期记忆网络+条件随机场模型,在评价指标F1上分别提升了11.00%与3.09%,从而验证了知识图谱中实体的类别信息对中文NER增强的有效性。 展开更多
关键词 命名实体识别 知识图谱 实体类别信息 知识增强
在线阅读 下载PDF
融合实体类别信息的实体关系联合抽取 被引量:16
3
作者 陈仁杰 郑小盈 祝永新 《计算机工程》 CAS CSCD 北大核心 2022年第3期46-53,共8页
针对实体关系抽取任务中的三元组重叠问题,基于编码器-解码器结构的联合抽取方法能够通过序列生成的方式加以解决。但现有方法没有充分利用实体类别信息,而实体类别信息对于构建更丰富的语义特征并进一步优化关系模型的效果具有重要意... 针对实体关系抽取任务中的三元组重叠问题,基于编码器-解码器结构的联合抽取方法能够通过序列生成的方式加以解决。但现有方法没有充分利用实体类别信息,而实体类别信息对于构建更丰富的语义特征并进一步优化关系模型的效果具有重要意义。在使用编码器-解码器结构的基础上,融合实体类别信息构建实体关系联合抽取模型FETI。编码器采用经典Bi-LSTM结构,解码器采用树状解码替代传统的一维线性解码。同时,在解码阶段增加头尾实体类别的预测,并通过辅助损失函数进行约束,使模型能够更有效地利用实体类别信息。在百度公开的中文数据集DuIE上进行实验,结果表明,FETI的F1值达到0.758,相对于CopyMTL、WDec、MHS、Seq2UMTree模型提升了2.02%~9.86%,验证了融合实体类别信息对于提升实体关系抽取模型性能的有效性。此外,基于不同解码顺序和不同权重损失函数的实验结果表明,解码顺序对模型性能影响较大,而对主要任务的损失函数赋予较高权重,能够保证辅助任务为主要任务提供有效的背景知识,同时限制噪声的影响。 展开更多
关键词 实体关系抽取 联合抽取 实体类别信息 三元组重叠 编码器 解码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部