针对传统实体关系抽取方法中主体特征与句向量难以有效融合、现有BIO标注策略难以有效处理重叠关系的问题,提出一种基于BERT和双重指针标注的家禽疾病诊疗文本实体关系联合抽取模型(Joint extraction of entity relationship of poultry...针对传统实体关系抽取方法中主体特征与句向量难以有效融合、现有BIO标注策略难以有效处理重叠关系的问题,提出一种基于BERT和双重指针标注的家禽疾病诊疗文本实体关系联合抽取模型(Joint extraction of entity relationship of poultry disease diagnosis and treatment text,JEER_PD)。JEER_PD使用双重指针标注(Dual-pointer labeling,DPL)策略,建立头、尾2个指针标注器,一次性标注出所有实体的开始和结束位置;引入CLN(Conditional layer normalization)网络层,强化主体抽取任务与客体关系联合抽取任务之间的联系;利用概率平衡策略PBS对抗正负类标签类别失衡,以加速模型收敛。实验表明,JEER_PD准确率、召回率和F1分别为97.69%、97.59%和97.64%,3项指标较现有方法均有显著提升,说明JEER_PD能够快速、准确地抽取家禽疾病诊疗复杂知识文本中的实体关系三元组。展开更多
关系抽取作为知识图谱等诸多领域的上游任务,具有广泛应用价值,近年来受到广泛关注。关系抽取模型普遍存在暴露偏差问题,抽取文本普遍存在实体嵌套和实体重叠问题,这些问题严重影响了模型性能。因此,提出了一种基于片段标注的实体关系...关系抽取作为知识图谱等诸多领域的上游任务,具有广泛应用价值,近年来受到广泛关注。关系抽取模型普遍存在暴露偏差问题,抽取文本普遍存在实体嵌套和实体重叠问题,这些问题严重影响了模型性能。因此,提出了一种基于片段标注的实体关系联合抽取模型(span-labeling based model,SLM),主要包括:将实体关系抽取问题转化为片段标注问题;使用滑动窗口和三种映射策略将词元(token)序列进行组合排列重新平铺成片段(span)序列;使用LSTM和多头自注意力机制进行片段深层语义特征提取;设计了实体关系标签,使用多层标注方法进行关系标签分类。在英文数据集NYT、WebNLG上进行实验,相对于基线模型F1值显著提高,验证了模型的有效性,能有效解决上述问题。展开更多
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取...基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。展开更多
文摘针对传统实体关系抽取方法中主体特征与句向量难以有效融合、现有BIO标注策略难以有效处理重叠关系的问题,提出一种基于BERT和双重指针标注的家禽疾病诊疗文本实体关系联合抽取模型(Joint extraction of entity relationship of poultry disease diagnosis and treatment text,JEER_PD)。JEER_PD使用双重指针标注(Dual-pointer labeling,DPL)策略,建立头、尾2个指针标注器,一次性标注出所有实体的开始和结束位置;引入CLN(Conditional layer normalization)网络层,强化主体抽取任务与客体关系联合抽取任务之间的联系;利用概率平衡策略PBS对抗正负类标签类别失衡,以加速模型收敛。实验表明,JEER_PD准确率、召回率和F1分别为97.69%、97.59%和97.64%,3项指标较现有方法均有显著提升,说明JEER_PD能够快速、准确地抽取家禽疾病诊疗复杂知识文本中的实体关系三元组。
文摘关系抽取作为知识图谱等诸多领域的上游任务,具有广泛应用价值,近年来受到广泛关注。关系抽取模型普遍存在暴露偏差问题,抽取文本普遍存在实体嵌套和实体重叠问题,这些问题严重影响了模型性能。因此,提出了一种基于片段标注的实体关系联合抽取模型(span-labeling based model,SLM),主要包括:将实体关系抽取问题转化为片段标注问题;使用滑动窗口和三种映射策略将词元(token)序列进行组合排列重新平铺成片段(span)序列;使用LSTM和多头自注意力机制进行片段深层语义特征提取;设计了实体关系标签,使用多层标注方法进行关系标签分类。在英文数据集NYT、WebNLG上进行实验,相对于基线模型F1值显著提高,验证了模型的有效性,能有效解决上述问题。
文摘基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。