期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
审计知识图谱的自动化构建——基于实体关系抽取的方法改进 被引量:1
1
作者 徐超 刘子硕 +1 位作者 周立云 黄佳佳 《财会月刊》 北大核心 2025年第10期34-39,共6页
本文聚焦于非结构化审计文本的智能分析,通过优化OneRel模型架构,创新性引入审计语义特征处理机制,形成审计实体关系抽取(Audit-OneRel)模型,突破了传统实体关系识别技术瓶颈。实验采用DuIE通用数据集与面向审计领域的指令评测数据集进... 本文聚焦于非结构化审计文本的智能分析,通过优化OneRel模型架构,创新性引入审计语义特征处理机制,形成审计实体关系抽取(Audit-OneRel)模型,突破了传统实体关系识别技术瓶颈。实验采用DuIE通用数据集与面向审计领域的指令评测数据集进行双重验证,发现改进模型对复杂文本的三元组提取能力显著增强。研究表明,改进模型通过结构化特征增强与审计领域的语义适配性,能有效提升审计知识图谱的构建质量,为风险预警与决策分析提供可靠数据支撑。基于上市公司财务数据的案例实证表明,该模型在审计线索发现与异常关联识别方面具有实践优势,为推进审计智能化转型提供了创新路径。 展开更多
关键词 审计知识图谱 实体关系抽取 OneRel 改进模型
在线阅读 下载PDF
面向领域知识图谱的实体关系抽取模型仿真 被引量:1
2
作者 何山 肖晰 张嘉玲 《吉林大学学报(理学版)》 北大核心 2025年第2期465-471,共7页
针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网... 针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网络对文本句子进行编码处理,将编码后文本句子特征表示向量输入至基于深度神经网络的实体识别模块中进行文本句子的实体识别,并将识别结果输入至基于卷积神经网络的实体关系抽取模块中进行实体关系抽取,然后将实体关系抽取获取的实体关系三元组输入至编解码模块中进行解码操作,实现最终的面向领域知识图谱的实体关系抽取.实验结果表明,该方法的实体关系抽取效果和整体应用效果较好. 展开更多
关键词 知识图谱 实体关系抽取 实体识别 卷积神经网络
在线阅读 下载PDF
基于关系图卷积神经网络的跨句实体关系抽取
3
作者 陈千 关春祥 +1 位作者 郭鑫 王素格 《中文信息学报》 北大核心 2025年第7期62-71,共10页
相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究... 相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究跨句实体关系抽取。首先,对篇章进行编码和构图;进而,使用关系图卷积神经网络对图节点进行更新,并利用融合篇章全局信息的节点嵌入表示更新边嵌入表示;最后,该模型使用一种迭代算法完成边信息的推理,实现跨句实体关系抽取。实验结果表明,相比基线模型,在CDR和GDA数据集上的跨句实体关系抽取性能得到了显著提高。 展开更多
关键词 关系图卷积神经网络 跨句实体关系抽取 实体嵌入
在线阅读 下载PDF
基于关系提示的单模块单步骤实体关系抽取方法研究
4
作者 刘辉 张智 王启源 《西安交通大学学报》 北大核心 2025年第3期222-234,共13页
针对现有关系三元组抽取方法由于忽略关系本身的关系语义信息以及三元组中元素的相互依赖和不可分性所导致的抽取效果不佳问题,提出了一种基于关系提示的实体关系抽取方法。在构建单模块单步关系三重抽取模型(RPSS)的基础上,考虑不同层... 针对现有关系三元组抽取方法由于忽略关系本身的关系语义信息以及三元组中元素的相互依赖和不可分性所导致的抽取效果不佳问题,提出了一种基于关系提示的实体关系抽取方法。在构建单模块单步关系三重抽取模型(RPSS)的基础上,考虑不同层次的关系语义信息和符号级和特征级的关系提示信息,对实体和关系提示符进行联合编码,得到统一的全局表示;同时通过注意力机制挖掘不同嵌入之间的深层关联,构建三重交互矩阵,可在一个步骤中直接从单个模块中提取所有三元组。结果表明:所提方法在NYT、WebNLG两个基准数据集上实现了最佳的表现,F_(1)分别达到了93.3%和94.9%。 展开更多
关键词 实体关系抽取 注意力机制 联合编码
在线阅读 下载PDF
基于Transformer交叉集成特征的实体关系抽取
5
作者 陈金玉 王名扬 刘旭 《东北师大学报(自然科学版)》 北大核心 2025年第1期74-81,共8页
提出基于Transformer交叉集成特征的实体关系抽取模型ERonTCI,通过对不同层次特征信息的交叉集成来提升实体关系抽取的精度.ERonTCI模型将BERT预训练模型作为嵌入层,将BiGRU网络和MSCNN网络作为主干结构,分别提取文本中的全局特征和局... 提出基于Transformer交叉集成特征的实体关系抽取模型ERonTCI,通过对不同层次特征信息的交叉集成来提升实体关系抽取的精度.ERonTCI模型将BERT预训练模型作为嵌入层,将BiGRU网络和MSCNN网络作为主干结构,分别提取文本中的全局特征和局部特征;使用Transformer实现对全局和局部特征的集成,以避免信息损失,提升模型对文本特征信息的保留度;将集成后的特征信息输入线性层完成实体关系的抽取工作.在公开数据集上进行实验,结果表明,ERonTCI模型取得了比基线模型更好的实体关系抽取效果. 展开更多
关键词 实体关系抽取 TRANSFORMER BiGRU MSCNN
在线阅读 下载PDF
一种标签融合驱动的中文医疗实体关系抽取方法
6
作者 陈闯 张维彦 +1 位作者 阮彤 郑红 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期260-269,共10页
医疗实体关系抽取是推动医疗信息化建设的关键步骤,旨在从医疗文本中抽取结构化的三元组信息。针对现有方法对实体类型标签和关系标签利用不充分的问题,提出了一种标签融合驱动的中文医疗实体关系抽取框架。首先,将实体关系抽取任务拆... 医疗实体关系抽取是推动医疗信息化建设的关键步骤,旨在从医疗文本中抽取结构化的三元组信息。针对现有方法对实体类型标签和关系标签利用不充分的问题,提出了一种标签融合驱动的中文医疗实体关系抽取框架。首先,将实体关系抽取任务拆分成双向的4个命名实体识别任务,并将每个任务的标签替换为头尾实体类型标签和关系标签的融合;其次,设计了三元组构造策略以最大限度利用双向抽取出的三元组;最后,利用三元组双向过滤模型筛选候选三元组。结果表明,该方法相较于GPLinker在F1指标上提升了3.01%。此外,该方法在医疗领域的重叠关系、多三元组和跨句三元组复杂场景中也表现出了优秀的性能。 展开更多
关键词 医疗文本 实体关系抽取 标签融合 双向抽取 三元组过滤模型
在线阅读 下载PDF
基于预训练大语言模型的实体关系抽取框架及其应用 被引量:1
7
作者 魏伟 金成功 +3 位作者 杨龙 周默 孟祥主 冯慧 《应用科学学报》 北大核心 2025年第1期20-34,共15页
实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model, PLLM-RE),并针对循环... 实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model, PLLM-RE),并针对循环经济政策进行了实体关系抽取研究。基于所提出的PLLM-RE框架,首先使用RoBERTa模型进行循环经济政策文本的实体识别,然后选取基于Transformer的双向编码器表示(bidirectional encoder representation from Transformers, BERT)模型进行循环经济政策实体关系抽取研究,以构建该政策领域的知识图谱。研究结果表明,PLLM-RE框架在循环经济政策实体关系抽取任务上的性能优于对比模型BiLSTM-ATT、PCNN、BERT以及ALBERT,验证了所提框架在循环经济政策实体关系抽取任务上的适配性和优越性,为后续循环经济领域资源的信息挖掘和政策分析提供了新思路。 展开更多
关键词 预训练大语言模型 实体关系抽取框架 循环经济政策 政策分析
在线阅读 下载PDF
基于大语言模型的实体关系抽取综述 被引量:1
8
作者 夏江镧 李艳玲 葛凤培 《计算机科学与探索》 北大核心 2025年第7期1681-1698,共18页
实体关系抽取任务旨在从非结构化文本中识别实体对及其相互关系,是众多自然语言处理下游任务应用的基础。随着大数据和深度学习技术的发展,实体关系抽取的研究取得了显著进展。近年来,将大语言模型应用于实体关系抽取任务已成为新的研... 实体关系抽取任务旨在从非结构化文本中识别实体对及其相互关系,是众多自然语言处理下游任务应用的基础。随着大数据和深度学习技术的发展,实体关系抽取的研究取得了显著进展。近年来,将大语言模型应用于实体关系抽取任务已成为新的研究趋势。大语言模型具备自动特征提取和强大的泛化能力,能够显著提升任务性能。对实体关系抽取的方法进行综述,并根据所使用的方法和模型的演变将其划分为两大类。介绍了命名实体识别和关系抽取任务的定义。系统回顾了实体关系抽取方法的发展历程,并对其相应模型的优缺点进行了深入分析。在此基础上,重点探讨了基于大语言模型的方法在解决实体关系抽取任务中的独特优势。整理了当前主流数据集的特点,并总结了实体关系抽取任务的常用评价指标,如精确率、召回率和F1值等。分析了当前研究中存在的挑战并对未来研究方向进行了展望。 展开更多
关键词 大语言模型 实体关系抽取 命名实体识别
在线阅读 下载PDF
融合层次对比学习的威胁情报实体关系抽取
9
作者 周法国 宋亚楠 廖俊斌 《计算机工程与设计》 北大核心 2025年第1期131-137,共7页
针对当前威胁情报领域实体关系抽取语义利用不充分、准确率低下的问题,提出一种基于层次对比学习的威胁情报领域实体关系抽取模型。利用预训练模型提取文本特征,融合三元组、句子级别正负样例信息输入到层次对比层进行全局语义和局部边... 针对当前威胁情报领域实体关系抽取语义利用不充分、准确率低下的问题,提出一种基于层次对比学习的威胁情报领域实体关系抽取模型。利用预训练模型提取文本特征,融合三元组、句子级别正负样例信息输入到层次对比层进行全局语义和局部边界增强,通过级联解码层加强实体识别与关系抽取的交互,采用层叠指针标注方式抽取出所有的实体关系三元组。根据威胁情报数据特点设计实体关系标注方案,构建数据集进行实验验证,模型在自建数据集上F1值达到82%,在公开数据集上的结果达到79%,验证了模型的有效性。 展开更多
关键词 威胁情报 实体关系抽取 层次对比学习 级联解码 正负样例信息 自建数据集 多头注意力机制
在线阅读 下载PDF
面向房地产拍卖公告的长文本实体关系抽取方法
10
作者 韩郁 殷永峰 +2 位作者 宋友 仵伟强 王宝会 《中文信息学报》 北大核心 2025年第3期76-83,95,共9页
大多数实体关系联合抽取方法关注实体对在句子内反映的关系,忽略了长文本情景下存在的关系类型分布不均衡等问题。该文面向房地产拍卖公告,基于实体关系抽取思想,针对房地产拍卖公告实体长度较长、关系复杂的情况,设计了一种关系补充抽... 大多数实体关系联合抽取方法关注实体对在句子内反映的关系,忽略了长文本情景下存在的关系类型分布不均衡等问题。该文面向房地产拍卖公告,基于实体关系抽取思想,针对房地产拍卖公告实体长度较长、关系复杂的情况,设计了一种关系补充抽取机制,并结合全局指针网络和二部图匹配算法,最终形成了一个新的关系抽取模型LRCM,增强了模型对长实体和关系重叠三元组的抽取能力,减小了关系类型分布不均衡对关系抽取性能的影响。实验结果显示,该文方法优于其他主流的实体关系抽取方法,在构建的房地产拍卖数据集和WebNLG数据集上,F 1值分别达到了86.0%和92.7%。 展开更多
关键词 实体关系联合抽取 长文本 房地产拍卖公告 关系补充抽取机制
在线阅读 下载PDF
基于并行异构图和序列注意力机制的中文实体关系抽取模型 被引量:1
11
作者 毛典辉 李学博 +2 位作者 刘峻岭 张登辉 颜文婧 《计算机应用》 CSCD 北大核心 2024年第7期2018-2025,共8页
近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之... 近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之一。针对中文文本中的重叠三元组问题,提出了一种混合神经网络实体关系联合抽取(HNNERJE)模型。HNNERJE模型以并行方式融合序列注意力机制和异构图注意力机制,并结合门控融合策略构建了深度集成框架。该模型不仅可以同时捕获中文文本的语序信息和实体关联信息,还能够自适应地调整主客体标记器的输出,从而有效解决重叠三元组问题。另外,通过引入对抗训练算法提高模型对未见样本和噪声的适应能力。运用SHAP(SHapley Additive exPlanations)方法对HNNERJE模型进行解释分析,基于模型的识别结果解析它在抽取实体和关系时所依据的关键特征。HNNERJE模型在NYT、WebNLG、CMeIE和DuIE数据集上的F1值分别达到了92.17%、93.42%、47.40%和67.98%。实验结果表明:HNNERJE模型可以将非结构化的文本数据转化为结构化的知识表示,有效提取其中蕴含的有价值信息。 展开更多
关键词 实体关系抽取 异构图 注意力机制 对抗训练 SHAP方法
在线阅读 下载PDF
基于异构图和语义融合的实体关系抽取
12
作者 唐贤伦 丁河长 +2 位作者 唐瑜泽 谢涛 罗洪平 《实验技术与管理》 CAS 北大核心 2024年第8期22-29,共8页
关系抽取是信息抽取中的一项重要任务,其目的是从非结构化文本中抽取出所有关系三元组。然而,如何有效地处理这一问题仍然是一个挑战,特别是对于关系重叠问题。为了有效处理重叠问题,该文提出一种基于异构图和语义融合的实体关系抽取方... 关系抽取是信息抽取中的一项重要任务,其目的是从非结构化文本中抽取出所有关系三元组。然而,如何有效地处理这一问题仍然是一个挑战,特别是对于关系重叠问题。为了有效处理重叠问题,该文提出一种基于异构图和语义融合的实体关系抽取方法:使用异构图将关系信息作为先验知识融入词表示,增强词表示的表示能力,使得模型能有效地处理单词实体重叠问题;使用语义融合模块将不同层次特征融合在一起作为关系分类模型的输入,使得模型能够有效地处理实体对重叠问题。所提方法在NYT和WebNLG数据集上取得了最好的效果,详细的实验也表明所提方法可以处理复杂的场景。 展开更多
关键词 实体关系抽取 异构图 语义融合 关系重叠 实体关系三元组
在线阅读 下载PDF
面向文本实体关系抽取研究综述 被引量:6
13
作者 任安琪 柳林 +1 位作者 王海龙 刘静 《计算机科学与探索》 CSCD 北大核心 2024年第11期2848-2871,共24页
信息抽取是知识图谱构建的基础,关系抽取作为信息抽取的关键流程和核心步骤,旨在从文本数据中定位实体并识别实体间的语义联系。因此提高关系抽取的效率可以有效提升信息抽取的质量,进而影响到知识图谱的构建以及后续的下游任务。关系... 信息抽取是知识图谱构建的基础,关系抽取作为信息抽取的关键流程和核心步骤,旨在从文本数据中定位实体并识别实体间的语义联系。因此提高关系抽取的效率可以有效提升信息抽取的质量,进而影响到知识图谱的构建以及后续的下游任务。关系抽取按照抽取文本长度可以分为句子级关系抽取和文档级关系抽取,两种级别的抽取方法在不同应用场景下各有优缺点。句子级关系抽取适用于较小规模数据集的应用场景,而文档级关系抽取适用于新闻事件分析、长篇报告或文章的关系挖掘等场景。不同于已有的关系抽取,介绍了关系抽取的基本概念以及领域内近年来的发展历程,罗列了两种级别关系抽取所采用的数据集,对数据集的特点进行概述;分别对句子级关系抽取和文档级关系抽取进行了阐述,介绍了不同级别关系抽取的优缺点,并分析了各类方法中代表模型的性能以及局限性;总结了当前研究领域中存在的问题并对关系抽取发展前景进行了展望。 展开更多
关键词 信息抽取 实体关系抽取 句子级关系抽取 文档级关系抽取 知识图谱构建
在线阅读 下载PDF
深度语句级实体关系抽取综述
14
作者 赵从健 焦一源 李雁妮 《西安电子科技大学学报》 CSCD 北大核心 2024年第6期117-131,共15页
语句级实体关系抽取(以下简称实体关系抽取)意指从给定的一条语句中抽取其中一对实体之间的语义关系,它是人工智能中知识图谱构建、自然语言处理、智能问答、Web搜索等应用的重要基础,是当前人工智能中最前沿的基础研究难题。随着深度... 语句级实体关系抽取(以下简称实体关系抽取)意指从给定的一条语句中抽取其中一对实体之间的语义关系,它是人工智能中知识图谱构建、自然语言处理、智能问答、Web搜索等应用的重要基础,是当前人工智能中最前沿的基础研究难题。随着深度神经网络在多个领域的成功应用,现已出现了多种基于深度神经网络模型的实体关系抽取算法。近几年来,随着持续地处理与理解文本信息的需求,开始出现了一些实体关系抽取与持续学习相结合的深度持续实体关系抽取算法。该类算法可以使模型在不遗忘已学习的旧任务知识的同时,可持续高效地进行序列性的多个任务的实体关系抽取。文中将对现有典型的深度实体关系抽取和持续实体关系抽取方法,从其深度网络模型、算法框架、性能特征等方面进行深入分析综述,并指出其研究发展趋势,为实体关系抽取的深入研究起到抛砖引玉的作用。 展开更多
关键词 深度学习 自然语言处理 实体关系抽取 持续学习 持续实体关系抽取
在线阅读 下载PDF
基于RoBERTa和加权图卷积网络的中文地质实体关系抽取 被引量:4
15
作者 张鲁 段友祥 +1 位作者 刘娟 陆誉翕 《计算机科学》 CSCD 北大核心 2024年第8期297-303,共7页
知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广... 知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广,因此知识图谱的构建和应用都面临着很多挑战。针对地质领域知识图谱构建过程中领域知识模式完备性差的问题,以及现有实体关系抽取方法在处理非欧氏数据时存在的不足,提出了一种基于图结构的实体关系抽取模型RoGCN-ATT。该模型使用RoBERTa-wwm-ext-large中文预训练模型作为序列编码器,结合BiLSTM获取更丰富的语义信息,使用加权图卷积网络结合注意力机制获取结构依赖信息,以增强模型对关系三元组的抽取性能。在地质数据集上F1值达78.56%,与其他模型的对比实验表明,RoGCN-ATT有效提升了实体关系抽取性能,为地质知识图谱的构建和应用提供了有力的支持。 展开更多
关键词 实体关系抽取 图卷积网络 依存句法分析 注意力机制 地质领域
在线阅读 下载PDF
最近对寻址的专利实体关系抽取方法 被引量:2
16
作者 李成奇 雷海卫 +1 位作者 李帆 呼文秀 《计算机工程与设计》 北大核心 2024年第4期1100-1108,共9页
针对专利领域没有公开数据集的问题,标注一个中文专利实体关系抽取数据集PERD(patent entity relation dataset)。为完成实体关系抽取任务,提出最近对寻址的实体关系抽取模型NPAM(nearest pair addressing entity relationship extracti... 针对专利领域没有公开数据集的问题,标注一个中文专利实体关系抽取数据集PERD(patent entity relation dataset)。为完成实体关系抽取任务,提出最近对寻址的实体关系抽取模型NPAM(nearest pair addressing entity relationship extraction model),实体位置信息获取方法的改进、注意力机制建模矩阵和实体抽取方法的创新,使该模型在PERD上F1值达到72.74%,相比模型PRGC提升12.64个百分点。实验结果验证了该模型的有效性。 展开更多
关键词 实体关系抽取 专利领域 数据集 最近对寻址 注意力机制 关联性矩阵 全词标记
在线阅读 下载PDF
一种基于异构图神经网络和文本语义增强的实体关系抽取方法 被引量:1
17
作者 彭勃 李耀东 +1 位作者 龚贤夫 李浩 《计算机科学》 CSCD 北大核心 2024年第S01期256-260,共5页
信息化时代,如何从海量自然语言文本中提取结构化信息已经成为研究热点。电力系统中繁杂的知识信息需要通过构建知识图谱来解决,而实体关系抽取是其上游的信息抽取任务,其完成度直接关系到知识图谱的有效性。而随着深度学习的不断发展,... 信息化时代,如何从海量自然语言文本中提取结构化信息已经成为研究热点。电力系统中繁杂的知识信息需要通过构建知识图谱来解决,而实体关系抽取是其上游的信息抽取任务,其完成度直接关系到知识图谱的有效性。而随着深度学习的不断发展,利用深度学习技术来完成实体关系抽取任务的研究逐渐展开并取得了良好的效果。然而目前依然存在文本语义应用不完全等问题。针对这些问题本文尝试提出了一种基于异构图神经网络和文本语义增强的实体关系抽取方法,该方法使用词节点与关系节点学习语义特征,并通过BRET与预训练任务分别获得两种节点的初始特征,使用多层图网络结构迭代更新,并在每一层中使用基于多头注意力机制的信息传递实现两种节点的交互。通过该模型与其他实体关系抽取在两个公开数据集上实验对比,所提模型取得了预期效果,在多种情境下普遍优于对比模型。 展开更多
关键词 深度学习 自然语言处理 知识图谱 实体关系抽取 异构图神经网络 文本语义增强
在线阅读 下载PDF
基于指针标注的跨境民族文化实体关系抽取方法 被引量:1
18
作者 杨振平 毛存礼 +2 位作者 雷雄丽 黄于欣 张勇丙 《中文信息学报》 CSCD 北大核心 2024年第3期75-83,共9页
跨境民族文化领域文本中存在较多的领域词汇,使得模型提取领域信息困难,造成上下文领域信息缺失,在该领域中实体密度分布高,面临实体关系重叠的问题。考虑到领域信息对跨境民族文化文本语义表征有着重要的作用,该文提出一种基于指针标... 跨境民族文化领域文本中存在较多的领域词汇,使得模型提取领域信息困难,造成上下文领域信息缺失,在该领域中实体密度分布高,面临实体关系重叠的问题。考虑到领域信息对跨境民族文化文本语义表征有着重要的作用,该文提出一种基于指针标注的跨境民族文化实体关系抽取方法,在字符向量表示中融入领域词典信息来增强领域信息用于解决领域实体标注不准确问题,通过多层指针标注解决跨境民族文化领域实体关系重叠问题。实验结果表明,在跨境民族文化实体关系抽取数据集上所提出方法相比于基线方法的F_(1)值提升了2.34%。 展开更多
关键词 跨境民族文化 实体关系抽取 指针标注 领域词典信息
在线阅读 下载PDF
基于对span的预判断和多轮分类的实体关系抽取 被引量:1
19
作者 佟缘 姚念民 《计算机工程与科学》 CSCD 北大核心 2024年第5期916-928,共13页
针对自然语言处理领域中的实体识别和关系抽取任务,提出一种对词元序列(Token Sequence,又称span)进行预测的模型Smrc。模型整体上利用BERT预训练模型作为编码器,另外包含实体预判断(Pej)、实体多轮分类(Emr)和关系多轮分类(Rmr)3个模块... 针对自然语言处理领域中的实体识别和关系抽取任务,提出一种对词元序列(Token Sequence,又称span)进行预测的模型Smrc。模型整体上利用BERT预训练模型作为编码器,另外包含实体预判断(Pej)、实体多轮分类(Emr)和关系多轮分类(Rmr)3个模块。Smrc模型通过Pej模块的初步判断及Emr模块的多轮实体分类来进行实体识别,再利用Rmr模块的多轮关系分类来判断实体对间的关系,进而完成关系抽取任务。在CoNLL04、SciERC和ADE 3个实验数据集上,Smrc模型的实体识别F1值分别达到89.67%,70.62%和89.56%,关系抽取F1值分别达到73.11%,51.03%和79.89%,相较之前在3个数据集上的最佳模型Spert,Smrc模型凭借实体预判断和实体及关系多轮分类,在2个子任务上其F1值分别提高了0.73%,0.29%,0.61%及1.64%,0.19%,1.05%,表明了该模型的有效性及其优势。 展开更多
关键词 对span的预判断 实体关系抽取 BERT预训练模型 多轮实体分类 多轮关系分类
在线阅读 下载PDF
基于伪实体数据增强的高精准率医学领域实体关系抽取
20
作者 郭安迪 贾真 李天瑞 《计算机应用》 CSCD 北大核心 2024年第2期393-402,共10页
针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其... 针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其次,在流水线抽取框架的基础上插入关系负例生成模块,通过基于欠采样的伪实体生成模型生成混淆关系分类模型的伪实体,并通过三种数据增强生成策略提升模型鉴别主语宾语颠倒、主语宾语边界错误和关系分类错误的能力;最后,通过基于悬浮标记的关系分类模型缓解数据增强带来的训练时间剧增的问题。在CMeIE数据集中,对比了目前主流的4个模型。实体抽取部分相较于次优模型PL-Marker(Packed Levitated Marker),F1值提升了2.26%;实体关系抽取相较于次优模型CBLUE(Chinese Biomedical Language Understanding Evaluation)提出的流水线抽取模型,F1值提升了5.45%,精准率提升了15.62%。实验结果表明使用特征读取单元和伪实体数据增强模块可有效提高抽取的精准率。 展开更多
关键词 实体关系抽取 数据增强 高精准率 医学领域 关系负例生成
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部