针对在GPS信号弱/拒止和环境感知欠缺的环境下可重构海洋浮体的协同控制问题,本文提出了一种基于定相对位姿(Determined relative pose,DRP)视觉伺服模型的鲁棒非线性模型预测控制(Nonlinear model predictive control,NMPC)方案。可重...针对在GPS信号弱/拒止和环境感知欠缺的环境下可重构海洋浮体的协同控制问题,本文提出了一种基于定相对位姿(Determined relative pose,DRP)视觉伺服模型的鲁棒非线性模型预测控制(Nonlinear model predictive control,NMPC)方案。可重构海洋浮体的视觉伺服问题难点主要包括环境干扰强、系统非线性程度高、视觉伺服易陷入局部极值和可见性约束强。为应对这些难题,该视觉伺服控制策略需要实现:被控船仅依靠视觉信息进行多船协同控制;视觉伺服模型收敛性好;控制器具有一定鲁棒性且处理非线性系统和约束条件的能力强。为此,本研究首先建立了单浮体的动力学模型;然后将视觉模型、被控船艏摇信息及相机云台转角信息整合到系统状态中,形成了DRP模型,从而保证了双浮体视觉伺服控制结束后相对位姿的唯一性;接着结合浮体动力学模型和DRP模型,建立了基于图像的视觉伺服(Image based visual servo,IBVS)的系统模型,并对该系统模型进行分析,进而据此设计了鲁棒的NMPC控制器,以保证视觉伺服任务可以在强外界干扰的环境下进行;最后通过大量数值仿真实验验证了该方案的有效性。这些实验结果不仅证明了控制策略的稳定性和准确性,还展示了其在复杂环境下的鲁棒性能。展开更多
文摘针对在GPS信号弱/拒止和环境感知欠缺的环境下可重构海洋浮体的协同控制问题,本文提出了一种基于定相对位姿(Determined relative pose,DRP)视觉伺服模型的鲁棒非线性模型预测控制(Nonlinear model predictive control,NMPC)方案。可重构海洋浮体的视觉伺服问题难点主要包括环境干扰强、系统非线性程度高、视觉伺服易陷入局部极值和可见性约束强。为应对这些难题,该视觉伺服控制策略需要实现:被控船仅依靠视觉信息进行多船协同控制;视觉伺服模型收敛性好;控制器具有一定鲁棒性且处理非线性系统和约束条件的能力强。为此,本研究首先建立了单浮体的动力学模型;然后将视觉模型、被控船艏摇信息及相机云台转角信息整合到系统状态中,形成了DRP模型,从而保证了双浮体视觉伺服控制结束后相对位姿的唯一性;接着结合浮体动力学模型和DRP模型,建立了基于图像的视觉伺服(Image based visual servo,IBVS)的系统模型,并对该系统模型进行分析,进而据此设计了鲁棒的NMPC控制器,以保证视觉伺服任务可以在强外界干扰的环境下进行;最后通过大量数值仿真实验验证了该方案的有效性。这些实验结果不仅证明了控制策略的稳定性和准确性,还展示了其在复杂环境下的鲁棒性能。