期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的基于嵌入式SoC卷积神经网络识别模型 被引量:5
1
作者 孙磊 肖金球 +1 位作者 夏禹 顾敏明 《计算机应用与软件》 北大核心 2020年第3期257-260,共4页
针对当前在FPGA上实现卷积神经网络模型时卷积计算消耗资源大,提高FPGA芯片性能代价较大等问题,提出一种改进的基于嵌入式SoC的优化设计方法。对卷积计算的实现方法和存储访问通道加以优化,以提高并行计算性能;将32位位宽的浮点数量化... 针对当前在FPGA上实现卷积神经网络模型时卷积计算消耗资源大,提高FPGA芯片性能代价较大等问题,提出一种改进的基于嵌入式SoC的优化设计方法。对卷积计算的实现方法和存储访问通道加以优化,以提高并行计算性能;将32位位宽的浮点数量化为16位定点数,加快前向传播的数据传输;结合硬件描述软件的高层次综合技术,将卷积神经网络映射到硬件平台成为一种同步数据流模型从而加快计算速度。通过实验证明,该方案较现有设计节约了89%的BRAM和72%的LUT,在工作频率为100 MHz的测试中,其处理速度比单独使用Cortex-A9的方案提升了42倍。 展开更多
关键词 卷积神经网络 嵌入式系统 FPGA 定点数量化
在线阅读 下载PDF
卷积神经网络的FPGA并行加速设计与实现 被引量:9
2
作者 满涛 郭子豪 曲志坚 《电讯技术》 北大核心 2021年第11期1438-1445,共8页
为提高目前硬件设备上运行卷积神经网络的速度和能效,针对主流的卷积神经网络提出了一种基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的流水线并行加速方案,设计优化了数据存储模块、卷积计算模块、池化模块以及全连接模... 为提高目前硬件设备上运行卷积神经网络的速度和能效,针对主流的卷积神经网络提出了一种基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的流水线并行加速方案,设计优化了数据存储模块、卷积计算模块、池化模块以及全连接模块,结合高层次综合技术构建了基于FPGA的卷积神经网络基本单元。为了降低加速系统的硬件开销,在保证卷积神经网络精度损失很小的前提下,采用数据量化的方式将网络参数从32位浮点数转化为16位定点数。系统测试使用MNIST数据集和CIFAR-10数据集,实验结果显示,所提出的卷积神经网络FPGA加速具有更快的识别效果,并且该方案在资源和功耗较少的情况下可以提供更好的性能,同时能够高效地利用FPGA上的硬件资源。 展开更多
关键词 卷积神经网络 现场可编程门阵列 并行加速 高层次综合 定点数量化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部