To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the s...The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the surrounding rock, a mechanical model was developed for the stability of the roadway support and surrounding rock. Analysis of the bearing capacity of the roof back-wall guard-board and modelling of the equations for the maximum deflection and the maximum compressive stress of the top and side beams of the I-shaped steel support were undertaken. Simultaneously, the model was used to calculate and analyse the stability of the top and side beams of the I-shaped steel support structure and analyse the criteria for their stability. The results provide a reliable theoretical basis for the judgment of the stability of the surrounding rock and support structure. The theoretical evaluation results are consistent with field data. Finally, the key support parameters of the top and side beams of the I-shaped steel support structure and the variation of the maximum deflection and the maximum compressive stress as affected by the influence of the guard-board length were investigated. It is concluded that, as the back-board length increases, the maximum compressive stress in the top beam of the I-shaped steel support increases while the compressive stress in the side beam decreases. The results show that the accuracy of judgment of the stability of a supported retreating roadway is improved, providing guidance for the design of such typical I-shaped steel support and back-board structures.展开更多
The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control sys...The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金Project(2014QNA50) supported by Fundamental Research Funds for the Central Universities,ChinaProject(51404248) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,China
文摘The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the surrounding rock, a mechanical model was developed for the stability of the roadway support and surrounding rock. Analysis of the bearing capacity of the roof back-wall guard-board and modelling of the equations for the maximum deflection and the maximum compressive stress of the top and side beams of the I-shaped steel support were undertaken. Simultaneously, the model was used to calculate and analyse the stability of the top and side beams of the I-shaped steel support structure and analyse the criteria for their stability. The results provide a reliable theoretical basis for the judgment of the stability of the surrounding rock and support structure. The theoretical evaluation results are consistent with field data. Finally, the key support parameters of the top and side beams of the I-shaped steel support structure and the variation of the maximum deflection and the maximum compressive stress as affected by the influence of the guard-board length were investigated. It is concluded that, as the back-board length increases, the maximum compressive stress in the top beam of the I-shaped steel support increases while the compressive stress in the side beam decreases. The results show that the accuracy of judgment of the stability of a supported retreating roadway is improved, providing guidance for the design of such typical I-shaped steel support and back-board structures.
基金Project(61025015)supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject (IRT1044)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China+2 种基金Projects(61143004,61203136,61074067,61273185)supported by the National Natural Science Foundation of ChinaProjects(12JJ4062,11JJ2033)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12C0078)supported by Hunan Provincial Department of Education,China
文摘The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.