利用近红外光谱技术对354个废旧涤/棉混纺织物进行研究,通过偏最小二乘法(partial least squares,PLS)和定性鉴别系数建立了不同光谱特征的涤/棉混纺织物近红外定性分析模型。染色涤/棉混纺织物NIR光谱主要有两大类,一类具有正常涤/棉...利用近红外光谱技术对354个废旧涤/棉混纺织物进行研究,通过偏最小二乘法(partial least squares,PLS)和定性鉴别系数建立了不同光谱特征的涤/棉混纺织物近红外定性分析模型。染色涤/棉混纺织物NIR光谱主要有两大类,一类具有正常涤/棉光谱特征,另一类光谱由于样本中染料、颜料和消光剂等化学助剂的影响,使光谱谱线成斜线,失去其光谱特征。如以全部样本建模,模型识别率较低。故将样本分为两类:斜线光谱样本和正常光谱样本,分别建立NIR定性分析模型。NIR定性分析模型建立后,根据验证结果分别对建模的谱区、预处理方法和主因子数进行优化,以提高模型的稳健性和可靠性。结果表明,样本分别建模后,模型的识别率大大提高,用验证集样本进行内部验证,正常光谱和斜线光谱所建模型的识别率均达99%,其校正集相关系数RC均为0.991,验证集相关系数RP分别为0.983和0.984、校正标准差SEC分别为0.887和0.453、预测标准差SEP分别为1.131和0.573。用150个界外样本分别对正常光谱样本模型和斜线光谱样本模型进行外部预测检验,模型识别率分别达91.33%和88.00%,表明所建NIR定性分析模型能够较好地在回收现场进行涤/棉混纺织物的鉴别。展开更多
Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. ...Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.展开更多
The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab...The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.展开更多
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere...The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.展开更多
The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. It...The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.展开更多
In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simpl...In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.展开更多
基金The National High Technology Research and Development Program of China(the"863"Program)(2012AA063006)Science and Technology Transfer and Industrialization Projects of Beijing Municipal Education Commission-Recycling of the Textile Wastes in Beijing(131105)
文摘利用近红外光谱技术对354个废旧涤/棉混纺织物进行研究,通过偏最小二乘法(partial least squares,PLS)和定性鉴别系数建立了不同光谱特征的涤/棉混纺织物近红外定性分析模型。染色涤/棉混纺织物NIR光谱主要有两大类,一类具有正常涤/棉光谱特征,另一类光谱由于样本中染料、颜料和消光剂等化学助剂的影响,使光谱谱线成斜线,失去其光谱特征。如以全部样本建模,模型识别率较低。故将样本分为两类:斜线光谱样本和正常光谱样本,分别建立NIR定性分析模型。NIR定性分析模型建立后,根据验证结果分别对建模的谱区、预处理方法和主因子数进行优化,以提高模型的稳健性和可靠性。结果表明,样本分别建模后,模型的识别率大大提高,用验证集样本进行内部验证,正常光谱和斜线光谱所建模型的识别率均达99%,其校正集相关系数RC均为0.991,验证集相关系数RP分别为0.983和0.984、校正标准差SEC分别为0.887和0.453、预测标准差SEP分别为1.131和0.573。用150个界外样本分别对正常光谱样本模型和斜线光谱样本模型进行外部预测检验,模型识别率分别达91.33%和88.00%,表明所建NIR定性分析模型能够较好地在回收现场进行涤/棉混纺织物的鉴别。
基金Project(14JJ4003) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531812) supported by China Postdoctoral Science Foundation+1 种基金Project supported by the Postdoctoral Foundation of Central South UniversityProject(14JJ4003) Project(2013SCEEKL001) supported by Foundation of Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment,China
文摘Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.
基金Project(61174047) supported by the National Natural Science Foundation of ChinaProject(20102304110003) supported by the Doctoral Fund of Ministry of Education of ChinaProject(51316080301) supported by Advanced Research
文摘The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.
文摘The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.
基金Projects(51108465,71371192)supported by the National Natural Science Foundation of ChinaProject(2014M552165)supported by China Postdoctoral Science FoundationProject(20113187851460)supported by Technology Project of the Ministry of Transport of China
文摘The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.
基金Project(kfj110207) supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,China
文摘In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.