期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的ORB算法的工件图像识别方法 被引量:14
1
作者 钟鹏程 李伟 刘敬华 《机床与液压》 北大核心 2020年第21期12-16,共5页
针对传统的工件图像识别算法运行速度慢、匹配精度差等问题,提出一种改进的ORB(Oriented FAST and Rotated BRIEF)算法解决工件图像的实时与准确识别问题。该算法的流程是首先利用ORB算法提取工件图像的角点特征,随后为其添加SURF(Speed... 针对传统的工件图像识别算法运行速度慢、匹配精度差等问题,提出一种改进的ORB(Oriented FAST and Rotated BRIEF)算法解决工件图像的实时与准确识别问题。该算法的流程是首先利用ORB算法提取工件图像的角点特征,随后为其添加SURF(Speed-Up Robust Features)描述符进行方向分配,得到具有旋转尺度不变性的图像角点,结合快速近似最近邻搜索算法进行特征点的匹配,实现工件图像的识别。实验结果表明:在图像存在旋转尺度变化的情况下,使用改进的ORB算法相比传统的ORB、SIFT(Scale Invariant Feature Transform)和SURF算法以及SIFT+SURF、SURF+FREAK组合算法在工件图像角点提取与目标匹配方面速度更快,识别精度更高,提高了工业机器人在搬运工件过程中对工件图像的识别效率和准确性。 展开更多
关键词 图像识别 改进的orb算法 旋转尺度不变性 快速近似最近邻搜索算法
在线阅读 下载PDF
基于视觉图像的飞行区大型目标监视方法改进研究 被引量:3
2
作者 王兴隆 许晏丰 王友杰 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期962-970,共9页
机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV... 机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV3和YOLOv5的网络模型(以下称为MobileNetV3-YOLOv5),即在YOLOv5的主干中使用MobileNetV3,来提高对目标的检测速度和准确度;提出了一种基于优化特征点提取的改进定向快速旋转简报(Oriented FAST and Rotated BRIEF,ORB)算法,将图像分割成多个区域,分别提取每个区域的特征点,从而提高目标识别框内区域的特征点识别数量,再进行特征点聚类筛选,最后根据识别目标类型采用最小包围盒进行轮廓划分,得到目标的轮廓定位。试验结果表明:MobileNetV3-YOLOv5方法对比原始YOLOv5模型,在识别目标准确率方面提升5百分点,在效率方面提升14张/s;同时在0~60 m的范围内,轮廓估计误差仅为2.9%;体现了所提出的监视方法的有效性,可以提升飞行区监视定位准确性和运行安全性。 展开更多
关键词 安全工程 飞行区运行 视觉图像 目标检测 定向快速旋转简报(orb)算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部