期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
圆锥曲线的两类定值性的推广与统一
1
作者 范静 张汉清 《教学与管理(中学版)》 2003年第02M期61-62,共2页
关键词 圆锥曲线 定值性 推广 统一 初等几何
在线阅读 下载PDF
Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area 被引量:11
2
作者 徐国元 闫长斌 《Journal of Central South University of Technology》 EI 2006年第5期577-583,共7页
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out... Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining. 展开更多
关键词 mined-out area excavation process blasting vibration STABILITY numerical simulation FLAC3D
在线阅读 下载PDF
Stability and reliability of pit slopes in surface mining combined with underground mining in Tonglushan mine 被引量:10
3
作者 罗一忠 吴爱祥 +1 位作者 刘湘平 王洪江 《Journal of Central South University of Technology》 EI 2004年第4期434-439,共6页
Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underg... Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring. 展开更多
关键词 surface-underground mining combination STABILITY RELIABILITY random finite element method (numerical simulation)
在线阅读 下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:28
4
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
在线阅读 下载PDF
Sensitivity analysis of geomechanical parameters affecting a wellbore stability 被引量:3
5
作者 Abolfazl ABDOLLAHIPOUR Hamid SOLTANIAN +2 位作者 Yaser POURMAZAHERI Ezzatollah KAZEMZADEH Mohammad FATEHI-MARJI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期768-778,共11页
Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive stre... Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived. 展开更多
关键词 wellbore stability sensitivity analysis numerical modeling
在线阅读 下载PDF
Stability analysis of cohesive soil embankment slope based on discrete element method 被引量:5
6
作者 XU Guang-ji ZHONG Kun-zhi +2 位作者 FAN Jian-wei ZHU Ya-jing ZHANG Yu-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1981-1991,共11页
In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of th... In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process. 展开更多
关键词 embankment slope cohesive soil stability analysis numerical simulation PFC2D software safety factor
在线阅读 下载PDF
Orthogonal design and numerical simulation of room and pillar configurations in fractured stopes 被引量:7
7
作者 吴爱祥 黄明清 +3 位作者 韩斌 王贻明 于少峰 缪秀秀 《Journal of Central South University》 SCIE EI CAS 2014年第8期3338-3344,共7页
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an... Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment. 展开更多
关键词 orthogonal design numerical simulation surface movement roof settlement stope stability room and pillarconfiguration
在线阅读 下载PDF
Attenuation of wave propagation in a novel periodic structure 被引量:2
8
作者 郑玲 李以农 A.BAZ 《Journal of Central South University》 SCIE EI CAS 2011年第2期438-443,共6页
A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principl... A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principle. The characteristics of wave propagation in unit cell were analyzed by transfer matrix formulation. Numerical examples were given to illustrate the effectiveness of the periodic mount. The experiments were carried out to identify the predications of the theoretical model. The obtained results show that the experimental results coincide with the prediction of theoretical model. No pass bands appear in the overall frequency range measured when waves propagate in the longitude direction of the periodic mount. These dramatic results demonstrate its potential as an excellent mount in attenuating and isolating vibration transmission. 展开更多
关键词 periodic structure vibration isolation passive mount
在线阅读 下载PDF
Effective model based fault detection scheme for rudder servo system
9
作者 徐巧宁 周华 +2 位作者 喻峰 魏兴乔 杨华勇 《Journal of Central South University》 SCIE EI CAS 2014年第11期4172-4183,共12页
The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a... The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection. 展开更多
关键词 rudder servo system fault detection nonlinear unknown input observer adaptive threshold
在线阅读 下载PDF
Improved model-based study of backfill stress distribution considering rock-backfill closure,mine depth,and position along stope length
10
作者 LIU Chun-kang WANG Hong-jiang +1 位作者 WU Ai-xiang LI Hao 《Journal of Central South University》 2025年第7期2717-2731,共15页
During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three... During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining. 展开更多
关键词 backfill mine depth rock-backfill closure stability maximum vertical stress numerical simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部