Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are ver...Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.展开更多
This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local ...This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.展开更多
In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible ...In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.展开更多
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
基金supported in part by China NSFC Grant 61202377 and 61170076the Guangdong Natural Science Foundation under Grant 2014A030313553+2 种基金the China National High Technology Research and Development Program 863, under Grant 2015AA015305Joint Funds of the National Natural Science Foundation of China under Grant U1301252Guangdong Province Key Laboratory Project under grant 2012A061400024
文摘Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.
基金This work was supported by the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120801the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120802
文摘This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.
基金supported by the National Natural Science Foundation of China (61471031)the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University (2013JBZ001)+2 种基金National Science and Technology Major Project (2016ZX03001014006)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No.2017D14)Shenzhen Peacock Program under Grant No.KQJSCX20160226193545
文摘In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.