针对到达时间差(Time Difference of Arrival,TDOA)体制下海上声源定位测量问题,研究了Chan算法在定位测量中的应用。建立了基于TDOA体制的海上声源被动定位模型,推导了Chan算法求解TDOA定位方程的步骤,采用了蒙特卡洛数值方法对Chan算...针对到达时间差(Time Difference of Arrival,TDOA)体制下海上声源定位测量问题,研究了Chan算法在定位测量中的应用。建立了基于TDOA体制的海上声源被动定位模型,推导了Chan算法求解TDOA定位方程的步骤,采用了蒙特卡洛数值方法对Chan算法与初始值选择真值的泰勒(Taylor)级数展开法在不同阵元数条件下的定位精度进行了比较,得出了Chan算法在海上声源定位测量中应用条件及基阵布设原则。仿真结果表明,在一定条件下,Chan算法可应用于海上声源定位测量且定位精度较高,研究结果可为海上声源测量系统定位算法设计及基站布设提供参考依据。展开更多
In this paper, a method to construct oblique wave-free potentials in the linearised theory of water waves for water with uniform finite depth is presented in a systematic manner. The water has either a free surface or...In this paper, a method to construct oblique wave-free potentials in the linearised theory of water waves for water with uniform finite depth is presented in a systematic manner. The water has either a free surface or an ice-cover modelled as a thin elastic plate. For the case of free surface, the effect of surface tension may be neglected or taken into account. Here, the wave-free potentials are singular solutions of the modified Helmholtz equation, having singularity at a point in the fluid region and they satisfy the conditions at the upper surface and the bottom of water region and decay rapidly away from the point of singularity. These are useful in obtaining solutions to oblique water wave problems involving bodies with circular cross-sections such as long horizontal cylinders submerged or half-immersed in water of uniform fmite depth with a free surface or an ice-cover modelled as a floating elastic plate. Finally, the forms of the upper surface related to the wave-free potentials constructed here are depicted graphically in a number of figures to visualize the wave motion. The results for non-oblique wave-free potentials and the upper surface wave-free potentials are obtained. The wave-free potentials constructed here will be useful in the mathematical study of water wave problems involving infinitely long horizontal cylinders, either half-immersed or completely immersed in water.展开更多
文摘针对到达时间差(Time Difference of Arrival,TDOA)体制下海上声源定位测量问题,研究了Chan算法在定位测量中的应用。建立了基于TDOA体制的海上声源被动定位模型,推导了Chan算法求解TDOA定位方程的步骤,采用了蒙特卡洛数值方法对Chan算法与初始值选择真值的泰勒(Taylor)级数展开法在不同阵元数条件下的定位精度进行了比较,得出了Chan算法在海上声源定位测量中应用条件及基阵布设原则。仿真结果表明,在一定条件下,Chan算法可应用于海上声源定位测量且定位精度较高,研究结果可为海上声源测量系统定位算法设计及基站布设提供参考依据。
文摘In this paper, a method to construct oblique wave-free potentials in the linearised theory of water waves for water with uniform finite depth is presented in a systematic manner. The water has either a free surface or an ice-cover modelled as a thin elastic plate. For the case of free surface, the effect of surface tension may be neglected or taken into account. Here, the wave-free potentials are singular solutions of the modified Helmholtz equation, having singularity at a point in the fluid region and they satisfy the conditions at the upper surface and the bottom of water region and decay rapidly away from the point of singularity. These are useful in obtaining solutions to oblique water wave problems involving bodies with circular cross-sections such as long horizontal cylinders submerged or half-immersed in water of uniform fmite depth with a free surface or an ice-cover modelled as a floating elastic plate. Finally, the forms of the upper surface related to the wave-free potentials constructed here are depicted graphically in a number of figures to visualize the wave motion. The results for non-oblique wave-free potentials and the upper surface wave-free potentials are obtained. The wave-free potentials constructed here will be useful in the mathematical study of water wave problems involving infinitely long horizontal cylinders, either half-immersed or completely immersed in water.