期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
完整经验:学生核心素养多维协同发展的路径探索
1
作者 赵志英 《中小学英语教学与研究》 北大核心 2025年第1期12-15,共4页
完整经验主要由经历和体验两个部分构成。它可作为促进学生核心素养多维协同发展的一条路径。本文结合课例“Ournewhome”,探讨如何通过搬家前、搬家中、搬家后这三个阶段,让学生经历完整的“搬家”事件、体验“搬家”带来的乐趣,并引... 完整经验主要由经历和体验两个部分构成。它可作为促进学生核心素养多维协同发展的一条路径。本文结合课例“Ournewhome”,探讨如何通过搬家前、搬家中、搬家后这三个阶段,让学生经历完整的“搬家”事件、体验“搬家”带来的乐趣,并引导学生在亲历搬家的全过程及深刻的体验中获得完整经验,从而拥有积极的生活态度及正确的价值观,实现核心素养多维协同发展。 展开更多
关键词 小学英语 核心素养 多维协同 完整经验
在线阅读 下载PDF
完整经验的基本涵义、生成机制及其教育意蕴 被引量:7
2
作者 杨晓萍 韩曜阳 《学前教育研究》 CSSCI 北大核心 2024年第5期71-77,共7页
完整经验具有与经验同一的动态性、生成性等本质特征,蕴含着过程取向的完整观。完整经验的生成应以生活经验与课程经验的交互为基础,以认知经验与社会经验的融合为条件,以反省经验到审美经验的升华为关键。基于完整经验的幼儿园教育变革... 完整经验具有与经验同一的动态性、生成性等本质特征,蕴含着过程取向的完整观。完整经验的生成应以生活经验与课程经验的交互为基础,以认知经验与社会经验的融合为条件,以反省经验到审美经验的升华为关键。基于完整经验的幼儿园教育变革,在课程设置方面,要体现经验的多样性、连续性、过程性和整合性,注重经验向反省经验、审美经验的进阶与升华,应整体考虑生活经验、社会经验和审美经验之于幼儿学习与发展的价值。在教学过程中,应提供适宜的支架,珍视幼儿生活经验的独特价值,创设真实的问题解决情境。 展开更多
关键词 完整经验 经验 幼儿园教育 教育变革
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
3
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习机
在线阅读 下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
4
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
在线阅读 下载PDF
短期风电功率CEEMDAN-SMA-LSSVM预测模型研究 被引量:2
5
作者 席语莲 凌周玥 许晓敏 《科学技术与工程》 北大核心 2024年第6期2396-2404,共9页
为了提高风力发电功率预测的准确性,建立了基于CEEMDAN分解的SMA算法优化LSSVM的短期风电功率组合预测模型。首先,采用完全集合经验模态分解(CEEMDAN)对原始风电功率数据进行分解与重构。随后,为了进一步优化最小二乘向量支持机模型(LSS... 为了提高风力发电功率预测的准确性,建立了基于CEEMDAN分解的SMA算法优化LSSVM的短期风电功率组合预测模型。首先,采用完全集合经验模态分解(CEEMDAN)对原始风电功率数据进行分解与重构。随后,为了进一步优化最小二乘向量支持机模型(LSSVM)的参数,引入了黏菌算法(SMA)优化,通过调整惩罚参数和核参数来提高模型性能,最后,构建多种对比模型对比分析表明CEEMDAN-SMA-LSSVM模型预测精度最高,预测结果更接近真实值。研究可用于风电场短期风电功率预测使用。 展开更多
关键词 风电功率预测 完整集成经验模态分解 黏菌算法 最小二乘支持向量机
在线阅读 下载PDF
逆变器的电容老化故障诊断方法研究 被引量:2
6
作者 赵智强 帕孜来·马合木提 李高原 《现代电力》 北大核心 2024年第1期182-190,共9页
针对逆变器电容老化故障的特征不明显、提取困难,且存在多分类、细分类问题,提出一种自适应白噪声完整集合经验模态分解(completeensembleempiricalmode decomposition with adaptive noise,CEEMDAN)与小波包能量熵(wavelet packet ener... 针对逆变器电容老化故障的特征不明显、提取困难,且存在多分类、细分类问题,提出一种自适应白噪声完整集合经验模态分解(completeensembleempiricalmode decomposition with adaptive noise,CEEMDAN)与小波包能量熵(wavelet packet energy entropy,WPEE)结合的特征提取策略,并利用改进麻雀搜索算法(improvedsparrow search algorithm,ISSA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)参数,完成故障诊断。首先,利用CEEMDAN处理相电压信号,获得模态分量(intrinsic mode function,IMF),根据相关系数、方差贡献率共同筛选IMF,将含噪的IMF去噪并重构,与不含噪的IMF构成纯净IMF组,然后利用小波包分析并对其分解获取故障特征明显的WPEE;其次,通过Iterative混沌映射与随机游走策略改进的SSA对LSSVM进行参数寻优,建立诊断模型;最后,以Z源逆变器为例进行验证。结果表明:所提方法能快速有效地提取电容老化故障特征,且诊断方法更快、故障识别率更高。 展开更多
关键词 逆变器 电容老化 自适应白噪声完整集合经验模态分解 改进麻雀搜索算法 最小二乘支持向量机 故障诊断
在线阅读 下载PDF
基于CEEMDAN奇异值熵和SVM的转子故障诊断
7
作者 岳晓峰 刘复秋宣 +1 位作者 周小龙 马国元 《制造技术与机床》 北大核心 2018年第8期78-83,共6页
提出一种基于自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)奇异值熵和支持向量机(support vector machine,SVM)的转子故障诊断方法。利用CEEMDAN方法首先对非平稳的转... 提出一种基于自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)奇异值熵和支持向量机(support vector machine,SVM)的转子故障诊断方法。利用CEEMDAN方法首先对非平稳的转子振动信号分解得到若干个表征信号自身特性的固有模态函数(intrinsic mode function,IMF),并通过虚假IMF分量判别法,剔除对于故障特征不敏感的IMF,以保证故障信息提取的准确性和有效性,在此基础上产生初始特征向量矩阵。并对此矩阵进行奇异值分解得到矩阵奇异值,使其作为故障特征向量,通过归一化处理得到奇异值熵,并以此作为SVM的输入,对转子的工作状态进行识别。研究结果表明:该方法可有效应用于转子故障诊断,实现对转子工作状态和故障类型的有效诊断。 展开更多
关键词 自适应白噪声完整经验模态分解 支持向量机 奇异值熵 故障诊断
在线阅读 下载PDF
基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究 被引量:43
8
作者 李怡 李焕锋 刘自然 《机电工程》 CAS 北大核心 2021年第5期599-604,共6页
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM... 针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。 展开更多
关键词 自适应白噪声完整经验模态分解 多尺度熵 麻雀搜索算法 支持向量机 故障诊断
在线阅读 下载PDF
基于时间模式注意力机制的GRU短期负荷预测 被引量:11
9
作者 乔石 王磊 +2 位作者 张鹏超 闫群民 余帆 《电力系统及其自动化学报》 CSCD 北大核心 2023年第10期49-58,共10页
针对新能源时代负荷数据随机性更强及负荷预测误差较大的问题,提出一种基于时间模式注意力机制的门控循环单元神经网络短期负荷预测方法。首先,采用自适应白噪声的完整经验模态分解对负荷数据进行处理,得到若干个频率范围不同的本征模... 针对新能源时代负荷数据随机性更强及负荷预测误差较大的问题,提出一种基于时间模式注意力机制的门控循环单元神经网络短期负荷预测方法。首先,采用自适应白噪声的完整经验模态分解对负荷数据进行处理,得到若干个频率范围不同的本征模函数。其次,通过最大互信息系数进行相关性分析筛选特征,优化输入数据的特征维度。然后,构建基于时间模式注意力机制的门控循环单元神经网络预测模型进行负荷预测,采用自回归算法优化线性特征提取能力,得到预测结果。最后,通过实例分析证明了所提模型有助于负荷预测精度的提升。 展开更多
关键词 短期负荷预测 最大互信息系数 自适应白噪声的完整经验模态分解 TPA-GRU神经网络
在线阅读 下载PDF
计及随机时滞与丢包的电力系统广域信号预测补偿方法 被引量:5
10
作者 陈中 唐浩然 +1 位作者 邢强 周涛 《电力系统保护与控制》 EI CSCD 北大核心 2019年第15期31-39,共9页
针对广域信号在通信系统的传输过程中具有时滞与丢包以及在实际场景下对量测信号采样过程中信号具有噪声等问题,建立了一种基于灰色Verhulst的预测补偿模型。将该模型与完整集成经验模态分解(Complete Ensemble Empirical Mode Decompos... 针对广域信号在通信系统的传输过程中具有时滞与丢包以及在实际场景下对量测信号采样过程中信号具有噪声等问题,建立了一种基于灰色Verhulst的预测补偿模型。将该模型与完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with adaptive noise,CEEMDAN)算法相结合,提出了一种电力系统广域信号的预测补偿方法。该方法首先通过CEEMDAN对广域信号进行降噪,然后采用灰色Verhulst预测方法对多个广域信号分别进行预测,得出统一时标的控制器输入信号。最后在OPNET-Matlab仿真平台中搭建了计及通信系统影响的两区四机系统,并在3种不同的通信场景下对所提算法进行验证。测试结果表明该方法具有一定的抗噪性能并可实现对具有时滞与丢包的广域信号预测补偿,为广域阻尼控制器的有效应用提供了一种新途径。 展开更多
关键词 广域电力系统稳定器 预测补偿 时滞与丢包 灰色预测 完整集成经验模态分解
在线阅读 下载PDF
基于CEEMDAN样本熵与FWA-SVM的高压断路器机械故障诊断 被引量:31
11
作者 赵书涛 马莉 +2 位作者 朱继鹏 李建鹏 赵慧 《电力自动化设备》 EI CSCD 北大核心 2020年第3期181-186,共6页
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,... 针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。 展开更多
关键词 高压断路器 振动信号 自适应白噪声完整集合经验模态分解 支持向量机 故障诊断
在线阅读 下载PDF
基于CEEMDAN-SQI-SVD的齿轮箱局部故障特征提取 被引量:20
12
作者 古莹奎 曾磊 +1 位作者 张敏 李文飞 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第5期78-88,共11页
经验模态分解(EMD)及以其为基础发展而来的方法在故障诊断领域中得到广泛应用,对于分解后固有模态函数(IMF)的有效选择及基于有效IMF故障特征的准确提取至关重要。为更高效地解决此类问题,提出一种基于具有自适应白噪声的完整集成经验... 经验模态分解(EMD)及以其为基础发展而来的方法在故障诊断领域中得到广泛应用,对于分解后固有模态函数(IMF)的有效选择及基于有效IMF故障特征的准确提取至关重要。为更高效地解决此类问题,提出一种基于具有自适应白噪声的完整集成经验模态分解(CEEMDAN)结合信号质量指数(SQI)算法与奇异值分解(SVD)的齿轮箱局部故障最优特征提取算法。以具有不同故障级别的齿轮局部裂纹进行试验验证方法的有效性,通过试验获取原始数据并进行CEEMDAN分解,利用SQI进行有效IMF选取,再结合SVD对有效IMF进行分解以获取最优特征向量,并输入至BP神经网络进行训练与测试,最后将测试结果与数种常规方法进行比较。结果表明,针对齿轮箱的局部故障,提出的CEEMDAN-SQI-SVD算法识别精度高,并优于数种常规方法。 展开更多
关键词 故障诊断 固有模态函数 自适应白噪声的完整集成经验模态分解 特征提取 BP神经网络
在线阅读 下载PDF
基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测 被引量:48
13
作者 黄凯 丁恒 +1 位作者 郭永芳 田海建 《电工技术学报》 EI CSCD 北大核心 2022年第15期3753-3766,共14页
锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为... 锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为健康因子,数据预处理阶段,首先使用自适应双指数模型平滑方法减少容量回升现象产生的负面影响,然后通过自适应白噪声完整集成经验模态分解(CEEMDAN)对数据进行降噪;模型构建阶段,利用预处理后的数据训练得到用于RUL预测的LSTM模型。以NASA和CALCE公开数据集为研究对象进行算法性能测试,实验结果表明,所提方法鲁棒性好,能够提供精确的RUL预测结果。 展开更多
关键词 锂电池 剩余使用寿命 自适应双指数模型平滑方法 自适应白噪声完整集成经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于改进Inception网络及LightGBM的弓网电弧识别方法 被引量:1
14
作者 李斌 孙凤桐 《辽宁工程技术大学学报(自然科学版)》 北大核心 2023年第6期748-755,共8页
针对弓网电弧识别方法对数据识别的单一性问题,提出一种基于改进多尺度卷积网络(GInception)结合LightGBM的弓网电弧识别方法。运用完整集合经验模态分解(CEEMDAN)和小波软阈值相结合的方法对原始信号进行降噪重构,将重构信号进行广播机... 针对弓网电弧识别方法对数据识别的单一性问题,提出一种基于改进多尺度卷积网络(GInception)结合LightGBM的弓网电弧识别方法。运用完整集合经验模态分解(CEEMDAN)和小波软阈值相结合的方法对原始信号进行降噪重构,将重构信号进行广播机制(Broadcasting)处理,变成多维信号后输入到GInception网络中进行特征提取,再将GInception网络提取的特征导入到轻量级梯度提升机中进行识别。研究结果表明:该识别方法在5组工况下弓网电弧识别的准确率达到96.3%。研究结论可为电车弓网电弧识别提供参考。 展开更多
关键词 弓网电弧 完整集合经验模态分解 卷积神经网络 多尺度卷积运算 轻量级梯度提升机
在线阅读 下载PDF
CEEMDAN结合LMS算法在轴承信号降噪中的应用 被引量:10
15
作者 朱敏 段志善 +1 位作者 郭宝良 王苗 《噪声与振动控制》 CSCD 2018年第2期144-149,共6页
针对在强噪声背景中提取有用信号的问题,结合完整集成经验模态分解(CEEMDAN)与自适应滤波中的最小均方算法(LMS)发展一种新的算法。先将信号进行CEEMDAN分解,分解为多个模态分量(IMF),然后再使用LMS对每一个分量进行降噪,最后将降噪后... 针对在强噪声背景中提取有用信号的问题,结合完整集成经验模态分解(CEEMDAN)与自适应滤波中的最小均方算法(LMS)发展一种新的算法。先将信号进行CEEMDAN分解,分解为多个模态分量(IMF),然后再使用LMS对每一个分量进行降噪,最后将降噪后的分量重构。通过仿真实验,验证了该方法可以消除大部分的噪声和干扰信号,且易于实现。最终将其应用于振动筛轴承故障诊断中,验证了该方法的可行性。 展开更多
关键词 振动与波 完整集成经验模态分解(CEEMDAN) 最小均方算法(LMS) 轴承故障诊断 信号降噪
在线阅读 下载PDF
一种基于模态分解和机器学习的锂电池寿命预测方法 被引量:11
16
作者 肖浩逸 何晓霞 +1 位作者 梁佳佳 李春丽 《储能科学与技术》 CAS CSCD 北大核心 2022年第12期3999-4009,共11页
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动... 锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。 展开更多
关键词 锂离子电池 寿命预测 自适应白噪声完整集成经验模态分解 随机森林 神经网络
在线阅读 下载PDF
基于压缩感知理论的缺失数据集下线损预测模型 被引量:19
17
作者 刘东升 代盛国 +4 位作者 商学斌 顾洁 金之俭 王颖琛 李煜 《广东电力》 2019年第2期80-86,共7页
线损预测是电网企业进行线损管理的基础,而电力系统中数据收集与传输过程中不可避免出现各种异常状况,导致线损数据缺失,影响线损预测精度。为解决这一问题,应用压缩感知理论研究矩阵稀疏变换方法和矩阵重构算法,实现电网运行缺失数据... 线损预测是电网企业进行线损管理的基础,而电力系统中数据收集与传输过程中不可避免出现各种异常状况,导致线损数据缺失,影响线损预测精度。为解决这一问题,应用压缩感知理论研究矩阵稀疏变换方法和矩阵重构算法,实现电网运行缺失数据的补全与重建,利用基于自适应噪声的完整集成经验模态分解建立线损预测模型,完成缺失数据集下的线损预测。某10 kV配电网算例验证结果表明,在数据量较大或数据缺失情况较严重的情况下,基于压缩感知理论的数据恢复方法能比传统方法更好地修复原始数据,恢复原始数据的变化趋势,提高线损预测精度。 展开更多
关键词 压缩感知 数据缺失 线损预测 数据修复 基于自适应噪声的完整集成经验模态分解
在线阅读 下载PDF
高铁沿线大风预测技术研究 被引量:6
18
作者 金曈宇 叶小岭 +2 位作者 熊雄 巩灿灿 姚锦松 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第3期615-622,共8页
风速预测是风致灾害预警的关键技术。针对高铁大风预测中延迟性和误报的问题,提出一种基于完整集合经验模态分解(CEEMDAN)和长短期记忆神经网络(LSTM)的组合预测模型对高铁沿线风速进行预测。为了减少预测模型的复杂度和提高模型预测精... 风速预测是风致灾害预警的关键技术。针对高铁大风预测中延迟性和误报的问题,提出一种基于完整集合经验模态分解(CEEMDAN)和长短期记忆神经网络(LSTM)的组合预测模型对高铁沿线风速进行预测。为了减少预测模型的复杂度和提高模型预测精度,原始风速数据用CEEMDAN分解并利用样本熵(SE)理论将分解出的分量按照样本熵近似值重组成趋势、细节、随机三分量后用长短期记忆神经网络建立预测模型。以高铁沿线某段风速气象数据为例,实验结果表明,与其他预测方法相比,本方法可有效降低预测延迟性和提高预测精度,准确追踪风速的波动性和非线性非平稳的变化,性能更加优越。在高速铁路沿线大风预测中能够发挥良好的适用性,减少大风预警的误报或不报等情况的发生。 展开更多
关键词 铁路大风预测 样本熵 完整集合经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于健康度分析的卫星故障预测模型 被引量:3
19
作者 朱昶文 党建成 周军 《计算机应用》 CSCD 北大核心 2019年第S02期34-40,共7页
针对目前卫星监测系统无法及时发现故障且无法反映卫星状态趋势变化的问题,提出一种基于自适应白噪声完整集成经验模态分解(CEEMDAN)方法与粒子群极限学习机组合(PSO-ELM)的指标预测模型和基于模糊层次分析法(FAHP)的多指标融合故障检... 针对目前卫星监测系统无法及时发现故障且无法反映卫星状态趋势变化的问题,提出一种基于自适应白噪声完整集成经验模态分解(CEEMDAN)方法与粒子群极限学习机组合(PSO-ELM)的指标预测模型和基于模糊层次分析法(FAHP)的多指标融合故障检测模型。首先,通过CEEMDAN算法对各指标进行分解后通过PSO-ELM预测;其次,对各指标预测值分别建立非线性无量纲模型,得到各指标“健康度”;最后,利用FAHP法对融合各指标“健康度”得到组件“健康度”,利用“健康度”判断是否发生故障。通过某在轨卫星蓄电池组故障数据实验可得,CEEMDAN-PSO-ELM预测模型在平均绝对误差(MAE)、均方根误差(RMSE)指标上分别为0.1029和0.125,均优于文中提到的其他预测模型;该故障检测模型与目前卫星监测系统相比,能提前两周期检测到故障。最后一句意义不大,作者同意删实例验证表明,该模型能实现故障预测功能。 展开更多
关键词 故障预测 自适应噪声完整集成经验模态分解 粒子群优化算法 极限学习机 模糊层次分析法
在线阅读 下载PDF
CEEMDAN在变压器振动信号提取中的应用 被引量:13
20
作者 尚海昆 许俊彦 +1 位作者 李宇才 林伟 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第3期459-468,共10页
有效提取变压器振动信息对于识别变压器运行状态具有重要的现实意义.本文提出一种基于自适应白噪声完整集成经验模态分解(CEEMDAN)的变压器振动信号分析方法.论文首先采用CEEMDAN将原始变压器振动信号分解成有限的固有模态分量(IMF),之... 有效提取变压器振动信息对于识别变压器运行状态具有重要的现实意义.本文提出一种基于自适应白噪声完整集成经验模态分解(CEEMDAN)的变压器振动信号分析方法.论文首先采用CEEMDAN将原始变压器振动信号分解成有限的固有模态分量(IMF),之后利用相关系数(CC)提取有效的IMF分量.最后,将提取出的有效IMF分量进行信号重构得到消噪结果.仿真及实测信号分析表明,该方法能够较准确实现信号消噪,成功提取出变压器振动信号的有效信息,验证了该方法的有效性和实用性. 展开更多
关键词 自适应白噪声完整集成经验模态分解 变压器 振动信号 去噪 相关系数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部