期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测 被引量:4
1
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
2
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
3
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:17
4
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于集合经验模式分解和遗传-高斯过程回归的短期风速概率预测 被引量:36
5
作者 甘迪 柯德平 +1 位作者 孙元章 崔明建 《电工技术学报》 EI CSCD 北大核心 2015年第11期138-147,共10页
短期风速概率预测对实现大规模风电并网具有重要意义。当前风速预测方法大多为点预测,无法描述风能的随机性。提出了一种基于集合经验模式分解(EEMD)和遗传-高斯过程回归(GAGPR)的组合概率预测方法,首先对筛选和归一化后的风速时间序列... 短期风速概率预测对实现大规模风电并网具有重要意义。当前风速预测方法大多为点预测,无法描述风能的随机性。提出了一种基于集合经验模式分解(EEMD)和遗传-高斯过程回归(GAGPR)的组合概率预测方法,首先对筛选和归一化后的风速时间序列进行集合经验模式分解,然后对各分量分别建立高斯过程回归模型,并引入遗传算法代替共轭梯度法,改进协方差函数的超参数寻优过程。最后叠加子序列预测结果得到风速概率预测结果,并与分位点回归法进行比较。仿真结果表明,该方法能够有效提高概率预测准确度,并为类似工程提供借鉴。 展开更多
关键词 集合经验模式分解 高斯过程回归 遗传算法 风速 概率预测
在线阅读 下载PDF
集合经验模式分解在旋转机械故障诊断中的应用 被引量:30
6
作者 窦东阳 赵英凯 《农业工程学报》 EI CAS CSCD 北大核心 2010年第2期190-196,共7页
为了抑制经验模式分解中的模式混淆现象,提高分析精度,引入集合经验模式分解(EEMD)算法。在分析信号上叠加适当的随机高斯白噪声序列,改变信号的局部时间跨度,从而改变一次经验模式分解(EMD)中分析的特征尺度,通过足够多次EMD分解,相当... 为了抑制经验模式分解中的模式混淆现象,提高分析精度,引入集合经验模式分解(EEMD)算法。在分析信号上叠加适当的随机高斯白噪声序列,改变信号的局部时间跨度,从而改变一次经验模式分解(EMD)中分析的特征尺度,通过足够多次EMD分解,相当于从多个角度提取信号的本质,最后由所有次分解得出的各本征模态函数(IMF)的均值作为输出,不但消除了人为噪声的影响,还清晰还原了信号的内在过程,准确揭示了其真实物理意义。通过仿真试验和实际的动静碰磨故障案例证实了EEMD算法的有效性,并与基本EMD算法和高频谐波法进行了对比,结果表明,EEMD虽然耗时较多但结果更准确,在旋转机械故障诊断领域应用前景广泛。 展开更多
关键词 旋转机械 故障诊断 集合经验模式分解 模式混淆 动静碰磨
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
7
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
集合经验模式分解在柴油机机械故障诊断中的应用 被引量:10
8
作者 张玲玲 骆诗定 +2 位作者 肖云魁 赵懿冠 廖红云 《科学技术与工程》 2010年第27期6745-6749,共5页
针对柴油机表面振动信号非平稳、非线性等特点,引入集合经验模式分解(EEMD)的信号分析方法,对原始振动信号叠加适当的随机高斯白噪声,从而改变信号的局部时间跨度,有效抑制了经验模式分解(EMD)的模式混叠现象。通过Hilbert变换作边际谱... 针对柴油机表面振动信号非平稳、非线性等特点,引入集合经验模式分解(EEMD)的信号分析方法,对原始振动信号叠加适当的随机高斯白噪声,从而改变信号的局部时间跨度,有效抑制了经验模式分解(EMD)的模式混叠现象。通过Hilbert变换作边际谱曲线以提取故障特征信息。仿真试验和发动机故障实例证实了EEMD算法可以提高振动信号的分析精度,在柴油机机械故障诊断领域应用前景广泛。 展开更多
关键词 柴油机 机械故障诊断 集合经验模式分解 经验模式分解 边际谱曲线
在线阅读 下载PDF
基于集合经验模式分解和公共空间模式的脑电信号特征提取 被引量:4
9
作者 张学军 霍延 +1 位作者 黄丽亚 成谢锋 《科学技术与工程》 北大核心 2020年第1期109-117,共9页
公共空间模式(common spatial pattern,CSP)能够较好地提取运动想象任务时脑电信号的判别特性,但是其性能与大脑进行想象任务的频带相关。为了确定这样一组频带实现精确的分类,基于集合经验模式分解、FIR滤波器组以及公共空间模式算法... 公共空间模式(common spatial pattern,CSP)能够较好地提取运动想象任务时脑电信号的判别特性,但是其性能与大脑进行想象任务的频带相关。为了确定这样一组频带实现精确的分类,基于集合经验模式分解、FIR滤波器组以及公共空间模式算法提出了一种脑电特征提取方法。预处理去除伪迹后的信号首先经过集合经验模式算法获得多个模函数,然后选择出包含μ节律和β节律范围的分量实现信号重构,重构后的脑电信号作为带通滤波器组的输入得到若干子带信号集合,从每个子带信号中提取CSP特征,最后将提取的特征经过支持向量机(support vector machine,SVM)进行分类。运用该方法对脑-计算机接口(brain-computer interface,BCI)竞赛数据集进行分类,实验表明该方法能够自适应地提取、筛选和判别每个受试者的空间CSP特征,分类准确率达96.53%。 展开更多
关键词 集合经验模式分解 公共空间模式分解 FIR滤波器组 支持向量机
在线阅读 下载PDF
基于集合经验模式分解的火灾时间序列预测 被引量:4
10
作者 张烨 田雯 刘盛鹏 《计算机工程》 CAS CSCD 2012年第24期152-155,共4页
采用集合经验模式分解(EEMD)和多变量相空间重构技术,结合非线性支持向量回归(SVR)模型,提出一种火灾次数时间序列组合预测方法。根据EEMD将非平稳的火灾时间序列分解为一系列不同尺度的固有模态分量,利用多变量相空间重构技术对分解的... 采用集合经验模式分解(EEMD)和多变量相空间重构技术,结合非线性支持向量回归(SVR)模型,提出一种火灾次数时间序列组合预测方法。根据EEMD将非平稳的火灾时间序列分解为一系列不同尺度的固有模态分量,利用多变量相空间重构技术对分解的各个分量进行相空间重构,构建其训练数据,对重构的训练数据建立各分量的非线性支持向量回归预测模型,使用SVR集成预测方法对火灾时间序列进行预测。仿真结果表明,与单变量相空间重构方法以及SVR方法相比,该方法具有较高的预测精度。 展开更多
关键词 火灾时间序列 集合经验模式分解 相空间重构 支持向量回归 非平稳
在线阅读 下载PDF
基于集合经验模式分解的ARIMA行业售电量预测模型 被引量:21
11
作者 林女贵 《电力科学与技术学报》 CAS 北大核心 2019年第2期128-133,共6页
售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序... 售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序列进行集合经验模态分解,通过添加白噪声得到不同时间尺度分布的售电量时间序列,分解后得到一系列相对平稳的本征模态函数和趋势项,然后利用自回归积分滑动算法对各平稳化本征模态函数和趋势项分别进行预测,得到各分量的预测结果,最后将分量预测结果叠加得到最终的售电量预测值。基于历史统计售电量数据的预测结果分析表明,基于集合经验模式分解的 ARIMA模型具有良好的预测精度。 展开更多
关键词 售电量预测 集合经验模式分解 自回归积分滑动平均模型
在线阅读 下载PDF
集合经验模式分解和小波变换方法的复合与应用 被引量:13
12
作者 代军 叶幸玮 《统计与决策》 CSSCI 北大核心 2021年第13期155-158,共4页
文章提出将集合经验模式分解和小波变换进行复合,以对单一降噪方法进行改进,并给出了该模型在金融数据降噪中的实际算例。结果显示:复合降噪模型能够克服单一模型中存在的模态混叠以及基函数固定等问题;在金融市场中利用该复合方法,可... 文章提出将集合经验模式分解和小波变换进行复合,以对单一降噪方法进行改进,并给出了该模型在金融数据降噪中的实际算例。结果显示:复合降噪模型能够克服单一模型中存在的模态混叠以及基函数固定等问题;在金融市场中利用该复合方法,可以得到动态相依性更为准确的估计,为金融时间序列分析和预测提供了新的方法。 展开更多
关键词 集合经验模式分解 小波降噪 复合模型 金融时间序列
在线阅读 下载PDF
基于集合经验模式分解和K-奇异值分解字典学习的滚动轴承故障诊断 被引量:7
13
作者 李继猛 李铭 +3 位作者 姚希峰 王慧 于青文 王向东 《计量学报》 CSCD 北大核心 2020年第10期1260-1266,共7页
针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动... 针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动信号进行预处理,剔除谐波干扰;其次,利用经典K-奇异值分解算法和预处理信号构造超完备字典;然后,利用K-均值聚类算法对字典中的原子进行筛选;最后,利用正交匹配追踪算法实现冲击故障特征的稀疏表示。实验分析和工程应用验证了所提方法的有效性和实用性。 展开更多
关键词 计量学 滚动轴承 故障诊断 稀疏表示 集合经验模式分解 K-奇异值分解字典学习 K-均值聚类
在线阅读 下载PDF
基于完全集合经验模态分解和排列熵的局部放电信号的小波包去噪方法 被引量:27
14
作者 高佳程 田蕴卿 +1 位作者 朱永利 郑艳艳 《电力系统及其自动化学报》 CSCD 北大核心 2018年第3期1-7,共7页
为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确... 为有效抑制含噪局部放电信号中的干扰成分,本文采用一种基于完全集合经验模态分解和排列熵的小波包去噪方法进行局部放电信号的去噪处理。该方法在对含噪信号进行完全经验模态分解的基础上,将分解后的各模态分量依据排列熵大小排列,确定出需要舍弃和进一步分解的模态分量。针对需要继续降噪处理的分量进行小波包变换,将分解后的分量信号进行重构,得到去噪后的局部放电信号。利用该方法对局部放电的仿真和实测信号进行去噪处理,并与传统的小波去噪和经验模态分解去噪方法进行对比分析。仿真和实验表明,本文所采用的方法取得了理想的去噪效果,验证了该方法的有效性,有利于局部放电信号的模式识别等进一步处理。 展开更多
关键词 局部放电 信号去噪 完全集合经验模态分解 排列熵 小波包
在线阅读 下载PDF
基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法 被引量:10
15
作者 毛世榕 史水平 +5 位作者 玉壮基 苏梅艳 李莎 何嘉 幸符 衡张清 《地震学报》 CSCD 北大核心 2023年第2期258-270,共13页
在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经... 在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经验模态分解(CEEMDAN)算法与Hurst指数相结合的地震数据去噪方法。首先通过CEEMDAN方法将信号分解为一系列本征模函数(IMF),然后利用Hurst指数对滤波后的IMF分量进行识别,最后对地震数据IMF分量进行重构,从而实现数据去噪。与传统方法的去噪效果对比表明,本文方法可将低信噪比波形的去噪效果提高32%,将高信噪比波形的去噪效果提高6倍。同时对地磁数据的去噪结果表明,本文方法能够较完整地将地铁噪声从地磁信号波形中滤除。 展开更多
关键词 地震数据去噪 地磁数据去噪 自适应噪声完全集合经验模态分解 HURST指数
在线阅读 下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:5
16
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
在线阅读 下载PDF
爆炸冲击波集合分解排列熵时变峰值降噪算法
17
作者 杜桂云 崔春生 +1 位作者 杨志飞 刘双峰 《探测与控制学报》 CSCD 北大核心 2024年第1期90-95,113,共7页
针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比... 针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比例距离下的含噪冲击波信号模型和实测数据来进行研究与验证。原始爆炸冲击波数据经CEEMDAN分解为若干个本征模态分量(IMFs);并以IMFs的MPE值作为分类指标,将IMFs分量划分为需滤波和存留两个类别,对含噪模型与实测数据进行降噪处理实验,将降噪处理后的IMFs分量和剩余的IMFs重构。试验结果表明,与贝塞尔低通数字滤波器、CEEMDAN降噪算法相比,该方法能够去除信号中含有的高频噪声,获得较好的降噪指标;同时尽可能地保留了信号中的尖峰与突变信息,是比较理想的爆炸冲击波信号降噪算法。 展开更多
关键词 爆炸冲击波 完全集合经验模式分解 排列熵 降噪
在线阅读 下载PDF
基于改进的集合经验模态方法振动信号分解 被引量:8
18
作者 刘涛 杜世昌 +2 位作者 黄德林 任斐 梁鑫光 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1452-1459,共8页
针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动... 针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动信号能够自动获取合适的EEMD参数,解决模态混叠问题.仿真实验和工程案例验证结果表明:与传统EEMD和自适应EEMD相比,基于变步长模式搜索的EEMD方法具有更高的分解精度及更快的运算效率. 展开更多
关键词 集合经验模态分解 变步长模式搜索 振动信号 模态混叠
在线阅读 下载PDF
中值互补集合经验模态分解 被引量:3
19
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
在线阅读 下载PDF
一种改进的集合平均经验模态分解去噪方法 被引量:6
20
作者 屈中阳 李鸿光 《噪声与振动控制》 CSCD 2014年第5期171-176,共6页
针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信... 针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信号。使用相关性判据剔除了EMD分解产生的伪IMF分量,改进了噪声估计方法。仿真表明,改进的方法能够对调幅调频含噪信号进行有效的去噪处理。 展开更多
关键词 振动与波 集合平均经验模式分解 去噪 噪声估计 阈值处理
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部