期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
1
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
2
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:17
3
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
4
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解(VMD)
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
5
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
雨刮-风窗摩擦噪声声品质主动控制自适应均衡算法 被引量:1
6
作者 范会志 郭辉 +3 位作者 冯庆宝 孙裴 王岩松 陆仲辉 《振动与冲击》 EI CSCD 北大核心 2024年第8期263-271,共9页
雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decompos... 雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decomposition weight constrained adaptive noise equalizer,EWCANE)算法。首先通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解雨刮-风窗摩擦噪声得到非平稳度较低的固有模式函数分量,计算各分量的方差比以表征各分量对噪声的影响程度;然后基于输入信号和误差信号的欧式范数以自适应对滤波器权重进行约束来降低噪声的瞬态冲击;最后根据方差比调整声音增益因子以均衡各分量的声品质主动控制。经过仿真验证,实车雨刮-风窗摩擦噪声信号响度得到有效降低,改善了雨刮-风窗摩擦噪声的声品质。 展开更多
关键词 雨刮-风窗 声品质主动控制 集合经验模态分解(EEMD) 自适应噪声均衡(ANE)算
在线阅读 下载PDF
基于CRITIC-CEEMDAN-CM的河流生态治理后环境影响评价方法
7
作者 陈东 《陕西水利》 2025年第5期74-77,共4页
为提升河流生态治理后的环境影响评价水平,提出一种基于CRITIC-CEEMDAN-CM的河流生态治理后环境影响评价方法。以浙江省衢州市马金溪河为研究对象,构建河流生态治理后环境影响评价指标体系;基于Criteria赋权法(Criteria Importance Thou... 为提升河流生态治理后的环境影响评价水平,提出一种基于CRITIC-CEEMDAN-CM的河流生态治理后环境影响评价方法。以浙江省衢州市马金溪河为研究对象,构建河流生态治理后环境影响评价指标体系;基于Criteria赋权法(Criteria Importance Though Intercrieria Correlation,CRITIC)和完全自适应噪声集合经验模态分解(Complete EEMD with Adaptive Noise,CEEMDAN)法计算指标综合权重;采用云模型(Cloud Model,CM)完成马金溪河生态治理后对环境影响效果的评价。结果表明:该方法能有效评价河道治理后对环境影响的整体效果。研究结果对河道治理具有指导意义。 展开更多
关键词 河流生态治理 环境影响后评价 Criteria赋权 完全自适应噪声集合经验模态分解法 云模型
在线阅读 下载PDF
基于ICEEMDAN-CNN的斜拉桥损伤识别方法研究
8
作者 刘杰 耿亚飞 +1 位作者 杨俊 王麒麟 《石家庄铁道大学学报(自然科学版)》 2025年第2期23-29,共7页
针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验... 针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验模态分解(CEEMDAN)的基础上,依据标准差特性推算合适的噪声源进行迭代更新,动态调整海量数据中的噪声水平并分解得到本征模态函数(IMF)分量;随后对IMF分量逐个进行最小二乘法非线性拟合,计算各个分量的Hurst指数用以筛选最佳IMF分量,为1D-CNN提供高质量的数据输入;细化调整卷积层结构与参数优化1D-CNN,提高模型对海量数据的泛化能力与计算效率,经训练后得到斜拉桥损伤识别模型;利用斜拉桥基准有限元模型提取多种工况数据,对斜拉桥损伤识别模型进行仿真分析。结果表明,ICEEMDAN-CNN模型在仿真分析时损伤定位精度为99.84%,损伤定量的最大误差为2.94%。 展开更多
关键词 斜拉桥 损伤识别方 海量数据 一维卷积神经网络 改进完全自适应噪声集合经验模态分解
在线阅读 下载PDF
基于CEEMDAN的矿山微震信号特征提取和分类方法
9
作者 赵云锋 陈林林 +3 位作者 罗忠浩 蒲源源 尚雪义 黄文祥 《矿业安全与环保》 北大核心 2025年第2期105-112,120,共9页
为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态... 为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态(IMF)分量,借助相关性系数筛选主分量,计算各主分量的方差贡献率和能量谱系数,以此作为分类学习的特征向量;利用鲸鱼算法(WOA)优化的卷积长短时记忆神经网络(WOA-CNN-LSTM)对岩体破裂和爆破振动信号进行分类。结果表明:CEEMDAN的主分量为PC1~PC8,随着分解层数的增加,岩体破裂信号的方差贡献率和能量谱系数平均值先增后减,而爆破振动信号呈下降趋势;与相关系数、方差贡献率相比,将特征向量能量谱系数作为WOA-CNN-LSTM、支持向量机(SVM)、BP神经网络3种方法的输入,分类准确率最高;WOA-CNN-LSTM的识别效果明显优于Bayes判别法、SVM和BP神经网络,且基于主分量能量谱系数的分类准确率达到了91.50%。 展开更多
关键词 微震信号分类 自适应噪声集合经验模态分解 鲸鱼算 卷积长短时记忆神经网络
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
10
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
考虑延误特征的航站楼离港聚集客流预测方法 被引量:1
11
作者 李明捷 王涛 +2 位作者 黄欣宁 田杰 姚霖昊 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第3期240-254,共15页
为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波... 为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波动规律和分布特征,构建基于自适应噪声完全集合经验模态分解(CEEMDAN)、排列熵算法(PE)以及鲸鱼优化算法(WOA)优化的长短期记忆神经网络(LSTM)的短期航站楼聚集客流预测模型。首先,应用CEEMDAN将聚集客流数据序列分解为若干模态分量(Intrinsic Mode Function, IMF)和残差量(Residual, Res),降低原序列中数据的复杂性和非平稳性影响;其次,为减小模型计算规模,同时提高预测效率和精度,采用PE算法对IMF分量进行熵值重构;最后,建立WOA-LSTM聚集客流预测模型,利用鲸鱼优化算法优化LSTM超参数,叠加重构分量的预测结果,得到最终的聚集客流预测值。将模型应用于长三角某枢纽机场进行实例验证。结果表明:CEEMDAN-PE-WOA-LSTM预测模型性能最优,相较单一的LSTM模型,候机大厅聚集客流预测的均方根误差、平均绝对误差以及百分比误差分别降低42.78%、44.00%及45.62%;相较CEEMDAN-WOA-LSTM模型,预测效率提高41.64%。本文所提模型能够有效拟合存在显著非线性和非平稳性特征的候机大厅聚集客流,具有较高的预测精度和运算效率。 展开更多
关键词 航空运输 离港聚集客流预测 完全自适应噪声集合经验模态分解 长短期记忆神经网络 航站楼客流 航班延误特征
在线阅读 下载PDF
北斗卫星钟差的CEEMDAN分解与周期项提取方法 被引量:9
12
作者 梁益丰 许江宁 +1 位作者 吴苗 何泓洋 《中国惯性技术学报》 EI CSCD 北大核心 2022年第4期476-484,共9页
卫星钟差具有非线性非平稳特征,其趋势分量、周期分量等信号与随机分量互相干扰,不利于钟差估计与预报、时间尺度算法等实际应用。为了实现卫星钟差数据的信噪分离与重构,提出了一种以自适应噪声完备集合经验模态分解(CEEMDAN)为基础的... 卫星钟差具有非线性非平稳特征,其趋势分量、周期分量等信号与随机分量互相干扰,不利于钟差估计与预报、时间尺度算法等实际应用。为了实现卫星钟差数据的信噪分离与重构,提出了一种以自适应噪声完备集合经验模态分解(CEEMDAN)为基础的信噪分离方法。经CEEMDAN分解得到多个本征模态分量,引入排列熵算法确定噪声主导分量与信号主导分量,通过t检验分析分量的高频与低频特征,从而完成信号重构。对各类北斗卫星原子钟进行实验,结果表明,以CEEMDAN为基础的综合分析方法能够准确辨识本征模态分量特征,重构周期项的频谱图中基本不含有不规则周期分量与多余信号;去除周期分量后,4颗北斗卫星原子钟的万秒频率稳定度平均提升21.6%。 展开更多
关键词 北斗卫星导航系统 卫星原子钟 自适应噪声完备集合经验模态分解 频率稳定度
在线阅读 下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
13
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
在线阅读 下载PDF
基于CEEMDAN和ICA的油气勘探大地电磁噪声消除方法 被引量:2
14
作者 曹小玲 唐新功 蒋涛 《石油地球物理勘探》 EI CSCD 北大核心 2023年第3期740-750,共11页
大地电磁(MT)信号中的噪声会严重影响大地电磁勘探的观测数据,导致后续反演、解释工作出现严重偏差,影响油气勘探效果。为此,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和独立分量分析(ICA)的噪声消除方法。该方法将... 大地电磁(MT)信号中的噪声会严重影响大地电磁勘探的观测数据,导致后续反演、解释工作出现严重偏差,影响油气勘探效果。为此,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和独立分量分析(ICA)的噪声消除方法。该方法将经验模态分解(EMD)中的CEEMDAN方法与盲源分离(BSS)中的ICA方法进行有效结合。首先,利用改进的端点检测技术识别电磁信号中的有噪声信号分段;其次,利用CEEMDAN方法对其进行分解,提取具有代表性的固有模态分量(IMF)分量并进行ICA处理,达到消除噪声的目的;然后,利用获得的独立分量对有用MT信号进行逆向重构;最后,将未受噪声污染的MT信号与去噪后的有用MT信号进行拼接,获得最终的消噪后的完整MT信号。对合成信号和实测MT数据的实验结果表明,该方法能有效消除MT信号中的噪声。 展开更多
关键词 大地电磁 自适应噪声完全集合经验模态分解(CEEMDAN) 独立分量分析(ICA) 去噪
在线阅读 下载PDF
类EMD算法在桥梁振动数据降噪中的对比分析
15
作者 王怀宝 冉俊俊 《吉林建筑大学学报》 CAS 2024年第4期45-54,共10页
在桥梁结构健康监测过程中,桥梁的振动信号易受外部环境影响而产生噪声,从而导致桥梁振动数据失真。针对此问题有着多种降噪算法,本文尝试使用经验模态分解(EMD)、集合经验模态分解(EEMD)和自适应噪声完全集合经验模态分解(CEEMDAN)3种... 在桥梁结构健康监测过程中,桥梁的振动信号易受外部环境影响而产生噪声,从而导致桥梁振动数据失真。针对此问题有着多种降噪算法,本文尝试使用经验模态分解(EMD)、集合经验模态分解(EEMD)和自适应噪声完全集合经验模态分解(CEEMDAN)3种算法分别对模拟仿真信号和桥梁振动信号数据进行降噪分析,进而探究3种算法的降噪性能。首先,使用3种算法分别处理原始信号数据,分离出不同的本征模态分量(IMF),并计算出其分量的方差比和相关系数;然后,利用参数筛选出有效分量进而重构信号;最后,以信噪比(SNR)与均方根误差(RMSE)作为评价指标,分析其降噪性能。结果表明CEEMDAN方法在3种方法中的降噪效果最好,而EEMD方法效果次之,EMD方法最弱。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 自适应噪声完全集合经验模态分解
在线阅读 下载PDF
基于多模态低秩处理的沙漠地震随机噪声压制 被引量:1
16
作者 张珊 李月 《吉林大学学报(信息科学版)》 CAS 2020年第2期111-118,共8页
沙漠地带的随机噪声使沙漠地震记录中的有效信号很大程度上被淹没。针对此问题,提出将自适应噪声辅助的集合经验模态分解方法(CEEMDAN:Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)与鲁棒标准正交子空间方法(R... 沙漠地带的随机噪声使沙漠地震记录中的有效信号很大程度上被淹没。针对此问题,提出将自适应噪声辅助的集合经验模态分解方法(CEEMDAN:Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)与鲁棒标准正交子空间方法(ROSL:Robust Orthonormal Subspace Learning)有效融合。首先利用CEEMDAN算法对沙漠地震数据进行分解,将分解得到的所有模态拼成一幅新记录,并对其进行低秩分解,再将得到的稀疏部分中每道的所有模态重新叠加获得去噪结果。二者相结合,不仅解决了单一的低秩处理对沙漠地震数据效果不明显的问题,同时也规避了要对CEEMDAN算法分解得到的模态进行取舍的难题。模拟实验和实际数据处理表明,该算法压制低频随机噪声具有明显的优势,同时对有效信号的保幅均能保证在85%以上,对实际数据中面波的压制也相对比较彻底。 展开更多
关键词 自适应噪声辅助的集合经验模态分解 鲁棒标准正交子空间 随机噪声 沙漠地震信号
在线阅读 下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
17
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-means++聚类 水母优化算 时序卷积网络
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
18
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 自适应噪声的改进完全集合经验模态分解(ICEEMDAN) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于实时滑动分解的融合时空图卷积流量预测研究
19
作者 牛帅 王景升 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4002-4013,共12页
为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑... 为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑动分解方法,此方法使得训练集随着时间轴动态变化,在每次分解过程中使用的均是实时和历史信息并未使用未来信息,更加符合实时预测任务需求。紧接着,利用自适应噪声完备集合经验模态分解技术将交通流数据进行分解得到一系列本征模态函数分量,将分量分别按照邻近、日和周相关等时段构建多尺度输入以表达时序数据的时间相似性;然后,构建一个时空融合网络有向图,有向图由表示时间相似性的时间图和反映空间连通流向性的空间图组成,用以表达路网节点所包含的时空相似性信息;同时,在模型训练过程中通过引入时空注意力机制使得模型自适应为时空关系分配不同的权重以便关注相似性更强的关键节点来提高模型预测精度。最后,为了验证EASTGCN模型的稳定性和鲁棒性,分别设计了多因素输入实验和多步长对比实验,并在公开的数据集上进行了实例验证。研究结果表明,EASTGCN模型在多步长预测任务中指标增幅跨度最小且性能最稳定;多因素输入的EASTGCN模型在PEMS04数据集的MAE、RMSE指标上相对于单因素输入模型来说分别降低3.83%~27.03%、4.24%~12.77%,在PEMS08数据集的MAE、RMSE指标上降低0.91%~38.69%、0.07%~31.21%。总的来说,EASTGCN模型不论是在长期预测任务还是在预测精度上均有更好的表现,实时滑动分解方法为“分解+预测”组合模型提供了一种新的思路。 展开更多
关键词 流量预测 时空图卷积 自适应噪声完备集合经验模态分解 多尺度输入 实时滑动
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
20
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算 改进的共生生物搜索算 变分模态分解
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部