期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
1
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
2
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
3
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
4
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
雨刮-风窗摩擦噪声声品质主动控制自适应均衡算法 被引量:1
5
作者 范会志 郭辉 +3 位作者 冯庆宝 孙裴 王岩松 陆仲辉 《振动与冲击》 EI CSCD 北大核心 2024年第8期263-271,共9页
雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decompos... 雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decomposition weight constrained adaptive noise equalizer,EWCANE)算法。首先通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解雨刮-风窗摩擦噪声得到非平稳度较低的固有模式函数分量,计算各分量的方差比以表征各分量对噪声的影响程度;然后基于输入信号和误差信号的欧式范数以自适应对滤波器权重进行约束来降低噪声的瞬态冲击;最后根据方差比调整声音增益因子以均衡各分量的声品质主动控制。经过仿真验证,实车雨刮-风窗摩擦噪声信号响度得到有效降低,改善了雨刮-风窗摩擦噪声的声品质。 展开更多
关键词 雨刮-风窗 声品质主动控制 集合经验模态分解(EEMD) 自适应噪声均衡(ANE)算法
在线阅读 下载PDF
类EMD算法在桥梁振动数据降噪中的对比分析
6
作者 王怀宝 冉俊俊 《吉林建筑大学学报》 CAS 2024年第4期45-54,共10页
在桥梁结构健康监测过程中,桥梁的振动信号易受外部环境影响而产生噪声,从而导致桥梁振动数据失真。针对此问题有着多种降噪算法,本文尝试使用经验模态分解(EMD)、集合经验模态分解(EEMD)和自适应噪声完全集合经验模态分解(CEEMDAN)3种... 在桥梁结构健康监测过程中,桥梁的振动信号易受外部环境影响而产生噪声,从而导致桥梁振动数据失真。针对此问题有着多种降噪算法,本文尝试使用经验模态分解(EMD)、集合经验模态分解(EEMD)和自适应噪声完全集合经验模态分解(CEEMDAN)3种算法分别对模拟仿真信号和桥梁振动信号数据进行降噪分析,进而探究3种算法的降噪性能。首先,使用3种算法分别处理原始信号数据,分离出不同的本征模态分量(IMF),并计算出其分量的方差比和相关系数;然后,利用参数筛选出有效分量进而重构信号;最后,以信噪比(SNR)与均方根误差(RMSE)作为评价指标,分析其降噪性能。结果表明CEEMDAN方法在3种方法中的降噪效果最好,而EEMD方法效果次之,EMD方法最弱。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 自适应噪声完全集合经验模态分解
在线阅读 下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
7
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-means++聚类 水母优化算法 时序卷积网络
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
8
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
基于ICEEMDAN和小波阈值的Φ-OTDR信号去噪算法
9
作者 师雪玮 徐大林 刘志成 《指挥控制与仿真》 2024年第1期78-84,共7页
针对分布式光纤声波传感系统信号信噪比较低的问题,提出了一种改进的自适应噪声完全集成经验模态分解方法。改进方法利用样本熵和小波阈值去噪算法,从高噪声分量中提取有效成分。通过改进的自适应噪声完全集成经验模态分解(ICEEMDAN,Int... 针对分布式光纤声波传感系统信号信噪比较低的问题,提出了一种改进的自适应噪声完全集成经验模态分解方法。改进方法利用样本熵和小波阈值去噪算法,从高噪声分量中提取有效成分。通过改进的自适应噪声完全集成经验模态分解(ICEEMDAN,Intrinsic Computing Expressive Empirical Mode Decomposition With Adaptive Noise)对实际采集的信号进行分解,计算样本熵,将其中的含噪分量进行小波阈值去噪,最后与未处理的信号分量进行重构。实验结果表明,对实采的信号进行降噪处理后,信噪比提高了5.34 dB,均方误差降低了0.0148,波形互相关系数提高了5.7%。与其他常用的去噪方法相比,该方法不仅在信噪比方面表现更优秀,而且在均方误差和波形互相关系数方面也具有更好的性能,能够更好地保留有用信号。 展开更多
关键词 分布式光纤声波传感系统 改进自适应噪声完全集成经验模态分解 样本熵 小波阈值去噪
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
10
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于改进CEEMDAN-BO-LSTM的短期电价预测
11
作者 秦昆 刘立群 +1 位作者 吴青峰 何俊强 《陕西科技大学学报》 北大核心 2025年第1期169-176,共8页
电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短... 电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短时记忆网络(LSTM)的短期电价预测模型.ICEEMDAN将原始数据分解为多个本征模态函数(IMF)和一个残差序列,然后将IMF分量重构为高频,中频和低频三个子序列,将子序列和残差序列分别与相关因素结合,重构为四个多维特征矩阵,输入BO-LSTM模型进行训练,最后得到预测结果.用西班牙国家电网公司Red Electric Espana运营数据进行算例分析,结果表明ICEEMDAN-BO-LSTM模型具有更高的准确度,在电价跳跃点和峰值点处预测结果表现出色,与其他方法相比预测效果更好,对能源企业和国家电力市场调控策略具有实用价值. 展开更多
关键词 电价预测 完全自适应噪声集合经验模态分解 贝叶斯优化 长短期记忆网络
在线阅读 下载PDF
变时间尺度城轨客流的本征模量分解及组合深度学习预测 被引量:3
12
作者 朱广宇 孙歆霓 +3 位作者 杨荣正 刘康琳 魏运 吴波 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4421-4430,共10页
城市轨道交通的不同运营状态,通常对应着客流时间序列中不同的本征模态分量(IMF)及时间尺度特征。基于自适应噪声的完全总体经验模态分解(CEEMDAN)算法和双向长短期记忆(BiLSTM)网络,该文构建了地铁短时客流时间序列的组合深度学习预测... 城市轨道交通的不同运营状态,通常对应着客流时间序列中不同的本征模态分量(IMF)及时间尺度特征。基于自适应噪声的完全总体经验模态分解(CEEMDAN)算法和双向长短期记忆(BiLSTM)网络,该文构建了地铁短时客流时间序列的组合深度学习预测模型。具体包括:基于CEEMDAN算法实现了客流时间序列的模态分解。分别使用样本熵和层次聚类对IMF分量进行复杂性和相似度分析,并在此基础上完成IMF分量的分类合并与重构;使用Optuna框架中的树形Parzen优化器(TPE)对模型的超参数进行优化,构建CEEMDAN-TPE-BiLSTM组合预测模型。采用实际数据对该文模型进行验证,结果表明,对于特定特征的客流时间序列数据,该文模型的精确性、有效性指标均达到最优。 展开更多
关键词 城市轨道交通 短时客流时间序列 自适应噪声完全总体经验模态分解 双向长短期记忆 组合预测
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
13
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于CEEMDAN-IASO-TCN组合模型的中长期径流预报
14
作者 徐军杨 罗远林 +3 位作者 刘月馨 陈冬强 张坚 张楚 《人民长江》 北大核心 2025年第4期128-135,共8页
准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月... 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月径流序列进行分解,然后利用IASO对TCN模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的IASO-TCN对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流域镇江关水文站1957~2019年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到0.9191和0.8691。研究成果可为水资源可持续利用提供可靠依据。 展开更多
关键词 中长期径流预报 自适应噪声完备集合经验模态分解 原子搜索算法 时间卷积网络 岷江流域
在线阅读 下载PDF
基于CEEMDAN-小波包自适应阈值混凝土声发射信号降噪研究 被引量:13
15
作者 杨智中 林军志 +2 位作者 汪魁 程梓益 刘攀 《振动与冲击》 EI CSCD 北大核心 2023年第3期139-149,共11页
为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对... 为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对循环荷载作用下的混凝土声发射信号进行降噪处理,运用信噪比和快速傅里叶变化(fast Fourier transform, FFT)分析来验证所用方法的可行性。实验结果表明:结合CEEMDAN-小波包自适应阈值对混凝土声发射信号进行降噪的效果较好,能有效地保留混凝土声发射信号特征信息,对混凝土声发射信号降噪提供新的思路,为后续利用声发射信号分析混凝土结构内部微裂纹扩展及演化特征奠定基础。 展开更多
关键词 循环荷载 混凝土声发射(AE)信号 完全自适应噪声集合经验模态分解(CEEMDAN) 小波包自适应阈值降噪 快速傅里叶变换(FFT)
在线阅读 下载PDF
海鸥算法优化DBN的光伏逆变器故障诊断方法 被引量:9
16
作者 梁家琦 帕孜来·马合木提 《可再生能源》 CAS CSCD 北大核心 2022年第11期1515-1522,共8页
光伏逆变器开路故障种类较多且特征相似,因此故障诊断准确率不高。文章将自适应噪声完备经验模态分解和改进深度置信网络相结合,提出一种新型的故障诊断方法。该方法首先分析光伏逆变器的拓扑结构和工作原理,定义不同的开路故障类型;其... 光伏逆变器开路故障种类较多且特征相似,因此故障诊断准确率不高。文章将自适应噪声完备经验模态分解和改进深度置信网络相结合,提出一种新型的故障诊断方法。该方法首先分析光伏逆变器的拓扑结构和工作原理,定义不同的开路故障类型;其次,采用自适应噪声完备经验模态分解和相关系数-能量值准则,筛选敏感本征模态函数(Intrinsic Mode Functions,IMF)分量,并通过希尔伯特变换求取各IMF分量包络谱,构造IMF分量、包络谱的能量和能量熵作为高维故障特征向量;最后,以训练集预测误差为适应度函数,采用海鸥算法(Seagull Optimization Algorithm,SOA)优化改进深度置信网络中的隐含层神经元数量和反向微调学习率两个重要参数,将多特征融合向量输入到SOA-DBN模型中,完成逆变器开关器件故障辨识。仿真和实验表明,与传统模型相比,文章所提的方法具有更好的诊断效果。 展开更多
关键词 光伏逆变器 自适应噪声完备经验模态分解 海鸥算法 深度置信网络 故障诊断
在线阅读 下载PDF
基于CEEMDAN和ICA的油气勘探大地电磁噪声消除方法 被引量:2
17
作者 曹小玲 唐新功 蒋涛 《石油地球物理勘探》 EI CSCD 北大核心 2023年第3期740-750,共11页
大地电磁(MT)信号中的噪声会严重影响大地电磁勘探的观测数据,导致后续反演、解释工作出现严重偏差,影响油气勘探效果。为此,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和独立分量分析(ICA)的噪声消除方法。该方法将... 大地电磁(MT)信号中的噪声会严重影响大地电磁勘探的观测数据,导致后续反演、解释工作出现严重偏差,影响油气勘探效果。为此,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和独立分量分析(ICA)的噪声消除方法。该方法将经验模态分解(EMD)中的CEEMDAN方法与盲源分离(BSS)中的ICA方法进行有效结合。首先,利用改进的端点检测技术识别电磁信号中的有噪声信号分段;其次,利用CEEMDAN方法对其进行分解,提取具有代表性的固有模态分量(IMF)分量并进行ICA处理,达到消除噪声的目的;然后,利用获得的独立分量对有用MT信号进行逆向重构;最后,将未受噪声污染的MT信号与去噪后的有用MT信号进行拼接,获得最终的消噪后的完整MT信号。对合成信号和实测MT数据的实验结果表明,该方法能有效消除MT信号中的噪声。 展开更多
关键词 大地电磁 自适应噪声完全集合经验模态分解(CEEMDAN) 独立分量分析(ICA) 去噪
在线阅读 下载PDF
DE算法优化CNN的滚动轴承故障诊断研究 被引量:12
18
作者 孙祺淳 李媛媛 《噪声与振动控制》 CSCD 北大核心 2022年第4期165-171,176,共8页
针对卷积神经网络(Convolutional Neural Network,CNN)在滚动轴承故障诊断应用中所存在超参数难以确定、网络输出不稳定等问题,提出一种基于差分进化算法(Differential Evolution,DE)优化卷积神经网络的故障诊断模型(CNN-DE)。首先,该... 针对卷积神经网络(Convolutional Neural Network,CNN)在滚动轴承故障诊断应用中所存在超参数难以确定、网络输出不稳定等问题,提出一种基于差分进化算法(Differential Evolution,DE)优化卷积神经网络的故障诊断模型(CNN-DE)。首先,该故障诊断模型利用DE算法来自适应调节CNN中的超参数,同时将CNN的诊断精度和稳定性一起作为DE算法优化的目标,使得CNN在保证精度的同时降低网络的波动;其次,使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)结合多参数的诊断方法,从原始信号中提取出更加有效的故障特征;最后,根据提取出的特征采用CNN-DE、CNN和BP等算法进行故障诊断,结果表明所提出的算法模型拥有更高的精度和更稳定的性能,也具有优异的抗噪能力,显示了CNN-DE在故障诊断应用中的可靠性。 展开更多
关键词 故障诊断 卷积神经网络 差分进化算法 自适应噪声完备集合经验模态分解 滚动轴承
在线阅读 下载PDF
考虑延误特征的航站楼离港聚集客流预测方法 被引量:1
19
作者 李明捷 王涛 +2 位作者 黄欣宁 田杰 姚霖昊 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第3期240-254,共15页
为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波... 为满足航班延误下航站楼内资源规划与旅客管理对聚集客流预测所提出的高精度和高效率要求,本文提出一种融合延误特征的离港聚集客流预测方法。通过引入航班延误特征量化表征航站楼离港聚集客流的波动情况,探究航班延误下离港聚集客流波动规律和分布特征,构建基于自适应噪声完全集合经验模态分解(CEEMDAN)、排列熵算法(PE)以及鲸鱼优化算法(WOA)优化的长短期记忆神经网络(LSTM)的短期航站楼聚集客流预测模型。首先,应用CEEMDAN将聚集客流数据序列分解为若干模态分量(Intrinsic Mode Function, IMF)和残差量(Residual, Res),降低原序列中数据的复杂性和非平稳性影响;其次,为减小模型计算规模,同时提高预测效率和精度,采用PE算法对IMF分量进行熵值重构;最后,建立WOA-LSTM聚集客流预测模型,利用鲸鱼优化算法优化LSTM超参数,叠加重构分量的预测结果,得到最终的聚集客流预测值。将模型应用于长三角某枢纽机场进行实例验证。结果表明:CEEMDAN-PE-WOA-LSTM预测模型性能最优,相较单一的LSTM模型,候机大厅聚集客流预测的均方根误差、平均绝对误差以及百分比误差分别降低42.78%、44.00%及45.62%;相较CEEMDAN-WOA-LSTM模型,预测效率提高41.64%。本文所提模型能够有效拟合存在显著非线性和非平稳性特征的候机大厅聚集客流,具有较高的预测精度和运算效率。 展开更多
关键词 航空运输 离港聚集客流预测 完全自适应噪声集合经验模态分解 长短期记忆神经网络 航站楼客流 航班延误特征
在线阅读 下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
20
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部