期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进级联R-CNN的面料疵点检测方法 被引量:5
1
作者 许胜宝 郑飂默 袁德成 《现代纺织技术》 北大核心 2022年第2期48-56,共9页
由于布匹疵点种类分布不均,部分疵点具有极端的宽高比,而且小目标较多,导致检测难度大,因此提出一种改进级联R-CNN的布匹疵点检测方法。针对小目标问题,在R-CNN部分采用在线难例挖掘,加强对小目标的训练;针对布匹疵点极端的长宽比,在特... 由于布匹疵点种类分布不均,部分疵点具有极端的宽高比,而且小目标较多,导致检测难度大,因此提出一种改进级联R-CNN的布匹疵点检测方法。针对小目标问题,在R-CNN部分采用在线难例挖掘,加强对小目标的训练;针对布匹疵点极端的长宽比,在特征提取网络中采用了可变形卷积v2来代替传统的正方形卷积,并结合布匹特征重新设计边界框比例。最后采用完全交并比损失作为边界框回归损失,获取更精确的目标边界框。结果表明:对比改进前的模型,改进后的模型预测边界框更加精确,对小目标的疵点检测效果更好,在准确率上提升了3.57%,平均精确度均值提升了6.45%,可以更好地满足面料疵点的检测需求。 展开更多
关键词 级联R-CNN 面料疵点 检测 可变形卷积v2 在线难例挖掘 完全交并比损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部