Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pres...Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
基金Project(51178468) supported by the National Natural Science Foundation of ChinaProject(2010bsxt07) supported by the Doctoral Dissertation Innovation Fund of Central South University,China
文摘Based on the upper bound theorem of limit analysis,the factor of safety for shallow tunnel in saturated soil is calculated in conjunction with the strength reduction technique.To analyze the influence of the pore pressure on the factor of safety for shallow tunnel,the power of pore pressure is regarded as a power of external force in the energy calculation.Using the rigid multiple-block failure mechanism,the objective function for the factor of safety is constructed and the optimal solutions are derived by employing the sequential quadratic programming.According to the results of optimization calculation,the factor of safety of shallow tunnel for different pore pressure coefficients and variational groundwater tables are obtained.The parameter analysis shows that the pore pressure coefficient and the location of the groundwater table have significant influence on the factor of safety for shallow tunnel.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.