As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co...As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.展开更多
In view of the fact that safety production supervision of coal mines in China features low efficacy, this paper applies principles of cybernetics to simulate the dynamic process of safety supervision, and proposes tha...In view of the fact that safety production supervision of coal mines in China features low efficacy, this paper applies principles of cybernetics to simulate the dynamic process of safety supervision, and proposes that institutional variables be controlled to support intermediate goals, which in turn contribute to the ultimate safety production objective. Rather than focusing all attention on safety issues of working faces, supervising departments of coalmines are advised to pay much more attention to institutional factors that may impact people’s attitude and behavior, which are responsible for most coalmine accidents. It is believed that such a shift of attention can effectively reduce coalmining production accidents and greatly enhance supervision efficacy.展开更多
Through the analysis for the process of Walsh modulation and demodula tion,the adaptive error-limiting method suitable for the Walsh code shutting multiplex ing in the mine monitor system is advanced in this article. ...Through the analysis for the process of Walsh modulation and demodula tion,the adaptive error-limiting method suitable for the Walsh code shutting multiplex ing in the mine monitor system is advanced in this article. It is proved by theoretical analysis and circuit experiments that this method is easy to carry out and can not only improve the quality of information transmission but also meet the requirement of the system patrol test time without the increasement of system investment.展开更多
基金Financial support for this project, provided by the National Basic Research Program of China (No. 2006CB202200)the National Major Project of Ministry of Education (No.304005) the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656), is gratefully acknowledged
文摘As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.
文摘In view of the fact that safety production supervision of coal mines in China features low efficacy, this paper applies principles of cybernetics to simulate the dynamic process of safety supervision, and proposes that institutional variables be controlled to support intermediate goals, which in turn contribute to the ultimate safety production objective. Rather than focusing all attention on safety issues of working faces, supervising departments of coalmines are advised to pay much more attention to institutional factors that may impact people’s attitude and behavior, which are responsible for most coalmine accidents. It is believed that such a shift of attention can effectively reduce coalmining production accidents and greatly enhance supervision efficacy.
文摘Through the analysis for the process of Walsh modulation and demodula tion,the adaptive error-limiting method suitable for the Walsh code shutting multiplex ing in the mine monitor system is advanced in this article. It is proved by theoretical analysis and circuit experiments that this method is easy to carry out and can not only improve the quality of information transmission but also meet the requirement of the system patrol test time without the increasement of system investment.