期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多智能体安全深度强化学习的电压控制 被引量:2
1
作者 曾仪 周毅 +3 位作者 陆继翔 周良才 唐宁恺 李红 《中国电力》 北大核心 2025年第2期111-117,共7页
针对分布式光伏在配电网中的高比例接入带来的电压越限和波动问题,提出了一种基于多智能体安全深度强化学习的电压控制方法。将含光伏的电压控制建模为分布式部分可观马尔可夫决策过程。在深度策略网络中引入安全层进行智能体设计,同时... 针对分布式光伏在配电网中的高比例接入带来的电压越限和波动问题,提出了一种基于多智能体安全深度强化学习的电压控制方法。将含光伏的电压控制建模为分布式部分可观马尔可夫决策过程。在深度策略网络中引入安全层进行智能体设计,同时在智能体奖励函数定义时,使用基于传统优化模型电压约束的电压屏障函数。在IEEE 33节点算例上的测试结果表明:所提方法在光伏高渗透率场景下可生成符合安全约束的电压控制策略,可用于在线辅助调度员进行实时决策。 展开更多
关键词 无功电压控制 安全深度强化学习 多智能体
在线阅读 下载PDF
基于双深度网络的安全深度强化学习方法 被引量:27
2
作者 朱斐 吴文 +1 位作者 伏玉琛 刘全 《计算机学报》 EI CSCD 北大核心 2019年第8期1812-1826,共15页
深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近... 深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近似最优解.可是,不受安全控制的探索性学习很可能会带来重大风险.针对上述问题,提出了一种基于双深度网络的安全深度强化学习(Dual Deep Network Based Secure Deep Reinforcement Learning,DDN-SDRL)方法.DDN-SDRL方法设计了危险样本经验池和安全样本经验池,其中危险样本经验池用于记录探索失败时的临界状态和危险状态的样本,而安全样本经验池用于记录剔除了临界状态和危险状态的样本.DDN-SDRL方法在原始网络模型上增加了一个深度Q网络来训练危险样本,将高维输入编码为抽象表示后再解码为特征;同时提出了惩罚项描述临界状态,并使用原始网络目标函数和惩罚项计算目标函数.DDN-SDRL方法以危险样本经验池中的样本为输入,使用深度Q网络训练得到惩罚项.由于DDN-SDRL方法利用了临界状态、危险状态及安全状态信息,因此Agent可以通过避开危险状态的样本、优先选取安全状态的样本来提高安全性.DDN-SDRL方法具有通用性,能与多种深度网络模型结合.实验验证了方法的有效性. 展开更多
关键词 强化学习 深度强化学习 深度Q网络 安全深度强化学习 安全人工智能 经验回放
在线阅读 下载PDF
面向主动配电网的安全多智能体深度强化学习电压优化控制 被引量:6
3
作者 梅铭洋 寇鹏 +1 位作者 张智豪 梁得亮 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第12期157-167,共11页
针对主动配电网电压优化控制中模型不确定性和通信代价大的问题,提出了一种基于灵敏度矩阵安全的多智能体深度强化学习(SMS-MADRL)算法。该算法利用安全深度强化学习,应对主动配电网的固有不确定性,并采用多智能体结构实现通信代价较小... 针对主动配电网电压优化控制中模型不确定性和通信代价大的问题,提出了一种基于灵敏度矩阵安全的多智能体深度强化学习(SMS-MADRL)算法。该算法利用安全深度强化学习,应对主动配电网的固有不确定性,并采用多智能体结构实现通信代价较小的分布式控制。首先,将电压优化控制问题描述为受约束的马尔可夫博弈(CMG);然后,对无功功率进行适当修改,通过分析节点电压的变化得到灵敏度矩阵,进而与主动配电网环境进行交互,训练出若干可以独立给出最优无功功率指令的智能体。与现有多智能体深度强化学习算法相比,该算法的优点在于给智能体的动作网络增添了基于灵敏度矩阵的安全层,在智能体的训练和执行阶段保证了主动配电网的电压安全性。在IEEE 33节点系统上的仿真结果表明:所提出的算法不仅能够满足电压约束,而且相较于多智能体深度确定性策略梯度(MADDPG)算法,网络损耗减少了4.18%,控制代价减少了70.5%。该研究可为主动配电网的电压优化控制提供理论基础。 展开更多
关键词 主动配电网 电压优化控制 多智能体深度强化学习 安全深度强化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部