期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
面向复杂环境的改进YOLOv5安全帽检测算法 被引量:1
1
作者 宋春宁 李寅中 《电子测量技术》 北大核心 2025年第7期163-170,共8页
对施工工人的安全帽佩戴检测是保障人员安全的重要方法,但现有的安全帽检测大多为人工检测,不仅耗时费力且效率低下。且目前存在的算法在面对复杂的环境或者天气下,存在检测精度低等问题。针对这一现象,基于YOLOv5s算法提出一种改进的... 对施工工人的安全帽佩戴检测是保障人员安全的重要方法,但现有的安全帽检测大多为人工检测,不仅耗时费力且效率低下。且目前存在的算法在面对复杂的环境或者天气下,存在检测精度低等问题。针对这一现象,基于YOLOv5s算法提出一种改进的安全帽佩戴检测算法。首先,基于残差思想和大型可分离模块设计提出SLSKA-POOL模块,并在池化层使用,该模块可以使网络更加关注目标特征,进一步提高网络能力;其次,提出CAKConv卷积模块,该模块通过不规则的卷积操作高效的提取特征,以提高网络性能;最后,在主干添加EMA模块,聚合多尺度空间结构信息,建立长短依赖关系,以获得更好的性能。实验结果表明:改进的YOLOv5与原算法相比,检测精度提升2.2%,mAP@0.5提升了3.6%,mAP@0.5:0.95提升了6.4%,实现了更准确高效的安全帽佩戴检测。 展开更多
关键词 YOLOv5 安全帽检测 注意力机制 CAKConv data augmentation
在线阅读 下载PDF
基于坐标注意力和软化非极大值抑制的密集安全帽检测
2
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s WIoU 边界框损失函数
在线阅读 下载PDF
多感受野增强的爆破现场安全帽检测算法 被引量:1
3
作者 王新良 王璐莹 《计算机工程与应用》 北大核心 2025年第7期315-324,共10页
针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分... 针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分支,提升小目标特征信息流通效率,提高了小目标的检测精度;设计基于空洞卷积组与卷积注意力机制的感受野增强模块(receptive field augmentation module,RFAM),捕获了更大范围的感受野和图像特征,改善了遮挡目标漏检率高的问题;根据三分支注意力机制构建特征增强网络(feature enhancement network,FENet),抑制背景噪音对目标区域的干扰,降低了复杂背景下的目标误检率;引入空间到深度卷积(space to depth-conv,SPD-Conv)得到无信息损失的二倍下采样特征图,保留了更多的特征信息,同时减少了模型的参数量。实验结果表明,所提算法的均值平均精度相较于基线算法提升了2.78个百分点,FPS达到了102.67,满足了爆破现场安全帽实时检测的需要。 展开更多
关键词 安全帽检测 YOLOX-s算法 感受野 空洞卷积 注意力机制
在线阅读 下载PDF
基于表观特征增强及融合的安全帽检测算法
4
作者 杨国亮 洪鑫芳 +1 位作者 盛杨杨 熊文楷 《计算机工程与应用》 北大核心 2025年第15期363-372,共10页
佩戴安全帽是保障工人生命安全的重要措施之一。针对安全帽佩戴检测网络难以准确定位和识别与环境颜色相似的安全帽和被遮挡的安全帽问题,提出一种基于表观特征增强及融合的安全帽检测算法。设计表观特征增强模块(appearance feature en... 佩戴安全帽是保障工人生命安全的重要措施之一。针对安全帽佩戴检测网络难以准确定位和识别与环境颜色相似的安全帽和被遮挡的安全帽问题,提出一种基于表观特征增强及融合的安全帽检测算法。设计表观特征增强模块(appearance feature enhancement module,AFEM)来构建主干特征提取网络。该模块通过并行使用浅层分支、倒置瓶颈结构分支和非对称卷积分支,实现了梯度向不同分支的传播,进而捕捉更多丰富的形状、边缘和纹理等外观特征;此外,提出双尺度特征融合模块(dual-scale feature fusion,DSFF)。该模块通过融合更细粒度的浅层特征图和特征金字塔中深层特征图来获取和强化被遮挡目标的局部表观特征信息,从而提高残缺目标的检测精度。实验结果表明,在SHWD数据集上,改进后的模型在保持实时性同时,召回率和精度分别达到88.3%和92.6%,较原模型提高了0.8和1.2个百分点。在检测不同场景下的安全帽时表现更为出色,能够更好地适应各种复杂多样场景。 展开更多
关键词 安全帽检测 YOLOv8 特征提取 特征融合
在线阅读 下载PDF
特征增强的低照度爆破现场安全帽检测算法
5
作者 王新良 王璐莹 《计算机工程》 北大核心 2025年第3期252-260,共9页
安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先... 安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先,在主干网络使用软池化构建软空间金字塔池化模块(SSPPM),减少了特征映射中的信息弥散,并在下采样映射中保留了更多上下文信息;其次,设计基于高效通道注意力(ECA)机制的高效特征融合模块(EFFM),加强了模型对目标区域特征的学习,提高了特征融合的效率,减少了模型误检情况的出现;再次,采用VariFocalLoss替代BCEWithlogitsLoss,动态调整正负样本的权重,使得模型关注数量较少的正样本,加速了模型的收敛过程,提升了两类目标的检测精度;最后,采用CIoU作为边框回归损失函数,提高了模型定位目标预测框的精度。实验结果表明,所提算法的均值平均精度(mAP)相较于基线算法提升了2.21百分点,每秒处理的图像数量提升了7.67,满足了低照度爆破现场安全帽实时检测的精度和速度需要。 展开更多
关键词 安全帽检测 YOLOX-s算法 注意力机制 边框回归损失函数 置信度损失函数
在线阅读 下载PDF
基于超分辨率重建的安全帽检测算法
6
作者 曹楠 童立靖 英溢卓 《计算机工程与设计》 北大核心 2025年第8期2417-2425,共9页
针对低分辨率图像细节丢失导致小目标特征提取困难,以及现有模型在安全帽目标检测中存在漏检和特征提取能力不足等问题,提出了一种基于超分辨率重建的安全帽检测算法。构建了一种基于多尺度特征和通道注意力的超分网络以重构小目标缺失... 针对低分辨率图像细节丢失导致小目标特征提取困难,以及现有模型在安全帽目标检测中存在漏检和特征提取能力不足等问题,提出了一种基于超分辨率重建的安全帽检测算法。构建了一种基于多尺度特征和通道注意力的超分网络以重构小目标缺失的细节信息;为了增强目标检测网络对图像中关键特征的提取能力和小目标的感知能力,在YOLOv5网络中增加了浅层特征图,并引入了坐标注意力机制;在检测端使用解耦检测头对定位和分类任务进行解耦,以进一步提高检测的准确率。实验结果表明,该算法对安全帽检测的平均精度均值mAP@0.5达到94.4%,相比原网络提升2.9%,验证了该算法在安全帽佩戴检测任务上的有效性。 展开更多
关键词 安全帽佩戴检测 深度学习 超分辨率重建 多尺度特征 残差网络 注意力机制 解耦检测
在线阅读 下载PDF
复杂作业场景下的反光衣和安全帽检测方法 被引量:4
7
作者 谢国波 肖峰 +2 位作者 林志毅 谢建辉 吴陈锋 《安全与环境学报》 CAS CSCD 北大核心 2024年第9期3513-3521,共9页
针对现有算法在复杂的工地环境中进行反光衣和安全帽检测时存在的无法有效区分目标和背景的微小差异问题,提出了一种改进YOLOX的反光衣和安全帽检测算法。首先,将主干网络中空间金字塔池化中的最大池化替换为平均池化,减少特征图的信息... 针对现有算法在复杂的工地环境中进行反光衣和安全帽检测时存在的无法有效区分目标和背景的微小差异问题,提出了一种改进YOLOX的反光衣和安全帽检测算法。首先,将主干网络中空间金字塔池化中的最大池化替换为平均池化,减少特征图的信息损失和过拟合风险;其次,设计一种带权注意力模块(Weighted Convolutional Block Attention Module,W-CBAM)嵌入特征融合层,通过权重系数提升对特征图空间维度的关注,增强特征图的表达能力;最后,添加自适应特征融合(Adaptively Spatial Feature Fusion,ASFF)模块,解决多尺度特征融合时存在的不一致性问题。在扩充后的公开反光衣安全帽数据集的试验结果表明,所提算法精度高达98.79%,优于原始的YOLOX算法和其他先进算法,同时具有较快的检测速度,满足施工环境检测需求。 展开更多
关键词 安全工程 反光衣检测 安全帽检测 YOLOX 注意力模块 自适应特征融合
在线阅读 下载PDF
改进YOLOX的夜间安全帽检测算法 被引量:1
8
作者 韩贵金 王瑞萱 +1 位作者 徐午言 李君 《计算机工程与应用》 CSCD 北大核心 2024年第15期180-188,共9页
安全帽检测是保障建筑施工现场安全的一个有效手段。为保证暗光条件下图像分辨度,塔机吊钩摄像头夜间经常需采集灰度图像。由于摄像头晃动和人员走动,安全帽目标区域还经常会出现模糊现象。为解决模糊灰度图像中目标特征丢失所导致的检... 安全帽检测是保障建筑施工现场安全的一个有效手段。为保证暗光条件下图像分辨度,塔机吊钩摄像头夜间经常需采集灰度图像。由于摄像头晃动和人员走动,安全帽目标区域还经常会出现模糊现象。为解决模糊灰度图像中目标特征丢失所导致的检测精度下降问题,以YOLOX为基准模型,提出一种用于夜间安全帽检测的特征增强和回归权重自适应YOLOX(feature enhancement and regression weight adaptive,FERWA-YOLOX)算法。算法在输入层增加了融合不同大小感受野的多尺度残差(multi-scale residuals,MSR)模块,在同层网络中融合更多局部特征,降低目标局部模糊带来的影响;在解耦头的分类分支增加并行池化通道注意力(parallel pooling channel attention,PPCA)模块,弥补因目标颜色特征丢失所导致的网络分类能力的下降;设计了一种带双惩罚项的损失函数(double penalty items-Siou,DPI-Siou),自适应地降低形状固定目标的形状损失和模糊目标在回归时的权重,提高网络的检测精度。实验结果表明,FERWA-YOLOX较原YOLOX算法,mAP提升了4.88个百分点,参数量仅提升0.5 MB,且满足夜间实时检测需求。 展开更多
关键词 夜间目标检测 安全帽检测 感受野 通道注意力 损失函数
在线阅读 下载PDF
面向小目标的多空间层次安全帽检测 被引量:3
9
作者 李嘉信 胡杨 +1 位作者 黄协舟 李洪均 《计算机工程与应用》 CSCD 北大核心 2024年第6期230-237,共8页
由于目标视频中存在目标小、距离远等影响检测效果的因素,对小目标的捕捉难度较大,提出一种面向小目标的多空间层次安全帽佩戴检测算法,该算法将在Yolov5s的网络模型基础上进行个性化改进。设计一种多空间注意力模块,从不同角度考虑空... 由于目标视频中存在目标小、距离远等影响检测效果的因素,对小目标的捕捉难度较大,提出一种面向小目标的多空间层次安全帽佩戴检测算法,该算法将在Yolov5s的网络模型基础上进行个性化改进。设计一种多空间注意力模块,从不同角度考虑空间特征的效果并加以融合,加强显著性特征的空间位置关系;融合多空间尺度的特征,同时结合特征提取过程中的多种特征,适应对不同空间层次目标的捕捉,提高对小目标的检测能力;利用数据增强提高数据集的泛用性,使训练目标适应更多样的情景;优化损失函数,增强回归能力,提高训练效果。实验结果表明,所提算法的平均准确率达到91.5%,明显地减少了漏检情况。除此之外,将其部署到实际施工现场,展现了出对小目标优越的检测性能,具有极大的应用价值。 展开更多
关键词 安全帽检测 Yolov5s 多空间注意力模块 数据增强 多空间尺度融合
在线阅读 下载PDF
基于改进YOLOv8n的施工现场安全帽检测算法 被引量:2
10
作者 齐瑞洁 袁玉英 +1 位作者 孙立云 乔世超 《电子测量技术》 北大核心 2024年第13期100-109,共10页
建筑、采矿、勘探等施工现场是非常复杂且多样化的区域,在这类场景下进行安全帽佩戴检测时,会存在图像遮挡严重、小目标信息容易丢失的问题。为此本文提出了一种基于改进YOLOv8n的安全帽佩戴检测算法。首先,对YOLOv8n模型的C2f模块进行... 建筑、采矿、勘探等施工现场是非常复杂且多样化的区域,在这类场景下进行安全帽佩戴检测时,会存在图像遮挡严重、小目标信息容易丢失的问题。为此本文提出了一种基于改进YOLOv8n的安全帽佩戴检测算法。首先,对YOLOv8n模型的C2f模块进行改进,融入改进后的倒置残差块注意力机制,使模型能够高效捕获全局特征,充分利用安全帽特征的关键信息;其次,结合SPPF模块和LSKA注意力机制,提出了SPPF-LSKA模块,提升网络对安全帽关键信息的关注度,避免实际复杂场景中背景信息对安全帽佩戴状态检测的影响;最后,使用Inner-SIoU损失函数优化网络模型,提升模型对安全帽佩戴状态检测的稳定性。实验结果表明,最终本文算法在复杂环境下安全帽佩戴状态检测的mAP@0.5达到了93.7%,较原YOLOv8算法的P、R、mAP@0.5和mAP@0.5:0.95分别提高了2.4%、4.0%、3.4%和5.3%,参数量降低了3.5%,计算量降低了5.9%,改善了安全帽佩戴状态检测误检和漏检的状况,便于实际检测应用的部署。 展开更多
关键词 深度学习 YOLOv8 安全帽检测 注意力机制 损失函数
在线阅读 下载PDF
基于注意力和重构特征融合的轻量级煤矿安全帽检测方法 被引量:6
11
作者 董彦强 程德强 +2 位作者 张云鹤 寇旗旗 张皓翔 《计算机工程与应用》 CSCD 北大核心 2024年第15期297-306,共10页
针对当前的工人安全帽检测算法模型参数量较大、推理交互时间较长、错检和漏检率较高等问题,提出了一种基于注意力和重构特征融合的轻量级煤矿工人安全帽实时检测方法MS-YOLO。为了在不影响检测精度的前提下压缩模型的大小并提升检测的... 针对当前的工人安全帽检测算法模型参数量较大、推理交互时间较长、错检和漏检率较高等问题,提出了一种基于注意力和重构特征融合的轻量级煤矿工人安全帽实时检测方法MS-YOLO。为了在不影响检测精度的前提下压缩模型的大小并提升检测的速度,采用轻量级网络MobileNeXt作为MS-YOLO算法的主干网络;重构了特征路径融合网络PANet,在网络中添加了新的尺度输入、ULSAM-4注意力模块和深度可分离卷积;为了加快模型收敛速度并提高预测框的回归精度,提出了一种新的损失函数CLIoU loss;该研究还建立了一个面向矿井场景的安全帽检测数据集以适用于其特殊的工况环境。通过在标准数据集和自建数据集上进行实验测试,结果表明,MS-YOLO模型不仅保持了较高的检测精度,还具有实时性好、模型轻量化的优点。 展开更多
关键词 目标检测 轻量级网络 煤矿安全帽检测 损失函数 注意力机制
在线阅读 下载PDF
针对CenterNet缺点的安全帽检测算法改进 被引量:3
12
作者 王海瑞 赵江河 +1 位作者 吴蕾 谢思远 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期125-133,共9页
为解决安全帽数据集上识别率较低的问题,本文提出了一种基于改进CenterNet网络结构的检测方法 .针对CenterNet多分类时热度图预测结果较差的问题,本文尝试在损失函数上进行改进,提出了Focal-Mse-One损失以及Focal-Mse-Guss损失,并且对... 为解决安全帽数据集上识别率较低的问题,本文提出了一种基于改进CenterNet网络结构的检测方法 .针对CenterNet多分类时热度图预测结果较差的问题,本文尝试在损失函数上进行改进,提出了Focal-Mse-One损失以及Focal-Mse-Guss损失,并且对这两个损失函数以及原始的Focal损失函数进行对比;针对CenterNet对推理过程中特征图复用性不高的问题提出了ASFF和DASFF结构并进行比较.实验结果表明,在GeForce GTX 1050显卡上推理速度可以达到20.78帧.在安全帽数据集上IOU为0.5时mAP值可达81.43%,相较于原始CenterNet提升了3.63%.文中提出的改进方法可以在没有明显增加推理时间的前提下明显提高安全帽的检测精度. 展开更多
关键词 安全帽检测 Focal-Mse-One loss Focal-Mse-Guss loss 特征融合 目标检测
在线阅读 下载PDF
深度学习中的安全帽检测算法应用研究综述 被引量:16
13
作者 张立艺 武文红 +3 位作者 牛恒茂 石宝 段凯博 苏晨阳 《计算机工程与应用》 CSCD 北大核心 2022年第16期1-17,共17页
安全帽是施工现场最常见和实用的个人防护工具,能够有效防止和减轻意外带来的头部伤害。安全帽检测是施工现场人员安全管理的主要工作,也是施工现场智能化监控技术的重要内容,随着深度学习的发展,现已成为智慧工地建设的重要部分。为了... 安全帽是施工现场最常见和实用的个人防护工具,能够有效防止和减轻意外带来的头部伤害。安全帽检测是施工现场人员安全管理的主要工作,也是施工现场智能化监控技术的重要内容,随着深度学习的发展,现已成为智慧工地建设的重要部分。为了综合分析深度学习在安全帽检测中的研究现状,针对安全帽检测算法研究,归纳了常用的安全帽检测算法和基于深度学习的安全帽检测算法,具体说明了其优缺点。在此基础上,针对现有问题,系统地总结分析了安全帽检测算法的相关改进方法,并梳理了各类方法的特点、优势和局限性。最后展望了基于深度学习的安全帽检测算法的未来发展方向。 展开更多
关键词 深度学习 安全帽检测 目标检测 智慧工地
在线阅读 下载PDF
基于轻量化深度学习模型的安全帽检测方法 被引量:5
14
作者 秦子豪 雷鸣 +1 位作者 宋文广 张维 《科学技术与工程》 北大核心 2022年第14期5659-5665,共7页
基于对施工现场管理中安全帽检测重要性的认识,同时考虑工程项目中硬件设施的成本控制等现实问题,提出了一种基于深度学习网络Tiny-YOLO v3的轻量化改进版本LT-YOLO的安全帽检测技术方法。LT-YOLO增加了网络的输出层,并包含一种创新的R-... 基于对施工现场管理中安全帽检测重要性的认识,同时考虑工程项目中硬件设施的成本控制等现实问题,提出了一种基于深度学习网络Tiny-YOLO v3的轻量化改进版本LT-YOLO的安全帽检测技术方法。LT-YOLO增加了网络的输出层,并包含一种创新的R-DSC特征提取模块,该模块能够在不改变网络输入与输出大小的前提下,极大地降低模型的复杂度。实验结果表明,LT-YOLO在轻量化效果与检测性能之间取得了优良的平衡,在3.5 M参数量的基础上达到了59.3 mAP(mean average precision)和59.4%Recall。因此LT-YOLO拥有极低的参数量和计算量,对高算力硬件的依赖性低,适用于实际工程管理应用的施工现场安全管理,能够极大地降低企业成本,提升施工安全管理的水平。 展开更多
关键词 施工现场管理 安全帽检测 深度学习 轻量化 工程管理
在线阅读 下载PDF
改进YOLOX的轻量级安全帽检测方法 被引量:10
15
作者 吕志轩 魏霞 马志钢 《计算机工程与应用》 CSCD 北大核心 2023年第1期61-71,共11页
针对施工环境下安全帽数据集少,被检测物体目标小和现有检测模型参数量大导致的模型鲁棒性差,准确率低,训练时间长问题,提出了一种改进YOLOX网络的安全帽检测方法。使用在线困难样本挖掘(OHEM)寻找数据集中的困难样本,结合马赛克(Mosaic... 针对施工环境下安全帽数据集少,被检测物体目标小和现有检测模型参数量大导致的模型鲁棒性差,准确率低,训练时间长问题,提出了一种改进YOLOX网络的安全帽检测方法。使用在线困难样本挖掘(OHEM)寻找数据集中的困难样本,结合马赛克(Mosaic)方法对困难样本拼接来扩充训练集数量;在模型预测端(prediction)加入分支注意力模块,将网络输出分为两部分输入模块来提取空间层面和通道层面上关键信息;提出一种新的余弦退火算法,初始时加入预热(warm up),过程中逐段减小学习率曲线的振荡幅度,训练中减小模型的收敛时间。实验结果表明,与原方法相比,改进安全帽检测方法对安全帽检测的mAP、准确率、召回率分别提高了6.77、2.52、9.14个百分点,训练中使用CDWR余弦退火算法在同周期下损失值减少了0.5~1.0,与原算法相比训练收敛时间减少约50%。 展开更多
关键词 施工环境 安全帽检测 YOLO网络 注意力模块 学习率
在线阅读 下载PDF
面向复杂场景的基于改进YOLOX_s的安全帽检测算法 被引量:4
16
作者 江新玲 杨乐 +3 位作者 朱家辉 陶磊 刘峰 段倩倩 《南京师大学报(自然科学版)》 CAS 北大核心 2023年第2期107-114,共8页
在工业生产过程中,安全帽是生产工人重要的安全保护工具.针对现有安全帽检测算法在复杂应用场景下对小目标、密集目标以及遮挡目标存在漏检、检测精度较低等问题,提出了一种基于YOLOX_s的改进算法.首先,通过改进YOLOX_s算法的模型结构,... 在工业生产过程中,安全帽是生产工人重要的安全保护工具.针对现有安全帽检测算法在复杂应用场景下对小目标、密集目标以及遮挡目标存在漏检、检测精度较低等问题,提出了一种基于YOLOX_s的改进算法.首先,通过改进YOLOX_s算法的模型结构,在原有网络结构的基础上新设立了一个预测特征层,其尺寸为160×160,该预测特征层通过将高层语义信息和低层传递的位置信息进行有效融合来预测小目标;其次,针对复杂的安全帽检测环境,将obj_loss的BCE_Loss改为Focal_Loss,即用Focal_Loss来训练obj分支来降低漏检;最后,将CSP1_X中的残差块改为shuffleNet基本单元以缩减参数量.改进后的算法mAP和recall分别提高了1.25%和2.32%,参数量缩减为3.61MB.改进后的算法有效降低了复杂环境下安全帽的漏检率和提高了检测精度,对实际生产过程中保障企业和工人的生命财产安全起到了一定的促进作用. 展开更多
关键词 安全帽检测 YOLOX_s 遮挡目标 小目标 密集目标
在线阅读 下载PDF
基于外接圆半径差损失的实时安全帽检测算法 被引量:2
17
作者 陈永平 朱建清 +2 位作者 谢懿 吴含笑 曾焕强 《计算机科学》 CSCD 北大核心 2022年第S01期424-428,共5页
针对安全帽检测算法的快速且精准需求,提出了一种实时安全帽检测算法。首先,针对基于边界框回归损失函数容易出现梯度消失(Gradient Vanish)的问题,本文提出外接圆半径差(Circumcircle Radius Difference,CRD)损失函数;然后,针对复杂多... 针对安全帽检测算法的快速且精准需求,提出了一种实时安全帽检测算法。首先,针对基于边界框回归损失函数容易出现梯度消失(Gradient Vanish)的问题,本文提出外接圆半径差(Circumcircle Radius Difference,CRD)损失函数;然后,针对复杂多尺度特征融合层制约检测速度的问题,提出了一种轻量化的小目标聚焦型(Focus on Small Object,FSO)特征融合层;最后本文结合YOLO网络、CRD和FSO形成YOLO-CRD-FSO(YCF)检测模型,实现实时安全帽检测。实验结果表明,在Jetson Xavier NX设备上检测分辨率为640×640的视频,YCF的检测速度达到43.4帧/秒,比当前最新锐的YOLO-V5模型的速度快了近2帧/秒,且均值平均精度提升了近1%。说明YCF检测模型综合优化了边界框回归损失函数和特征融合层,获得了良好的安全帽检测效果。 展开更多
关键词 边界框回归 特征融合层 YOLO 目标检测 安全帽检测
在线阅读 下载PDF
改进SSD的安全帽检测方法 被引量:33
18
作者 李明山 韩清鹏 +1 位作者 张天宇 王道累 《计算机工程与应用》 CSCD 北大核心 2021年第8期192-197,共6页
施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法。针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD... 施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法。针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD模型结构进行改进,添加用以特征融合的分支网络,增强浅层特征图语义,引入该网络后SSD300的mAP-50(mean Average Precision)相应提升2.3个百分点,且SSD300实时检测速率仅降低1.3 frame/s,达到39.6 frame/s。为使SSD模型的先验框与有效感受野匹配,对SSD默认框设置方法进行改进,引入可变参数间接调节先验框大小,改进后的SSD300与SSD512的mAP分别达到74.6%与82.5%。安全帽数据集测试结果表明,改进后的SSD模型对安全帽佩戴检测具有优秀的准确性与良好的实时性,基本满足实际应用需求。 展开更多
关键词 深度学习 计算机视觉 SSD 安全帽检测 特征融合 小目标
在线阅读 下载PDF
基于改进YOLOv5s的安全帽检测算法 被引量:30
19
作者 赵睿 刘辉 +2 位作者 刘沛霖 雷音 李达 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2050-2061,共12页
针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加... 针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加关注小目标信息的通道特征,以提升对小目标的检测性能;对数据增强方式进行改进,丰富小尺度样本数据集;增加一个检测层以便能更好地学习密集目标的多级特征,从而提高模型应对复杂密集场景的能力。此外,构建一个面向密集目标及远距离小目标的安全帽检测数据集。实验结果表明:所提改进算法比原始YOLOv5s算法平均精确率(mAP@0.5)提升6.57%,比最新的YOLOX-L及PP-YOLOv2算法平均精确率分别提升1.05%与1.21%,在密集场景及小目标场景下具有较强的泛化能力。 展开更多
关键词 安全帽检测 YOLOv5s算法 数据增强 DenseBlock模块 SE-Net注意力模块
在线阅读 下载PDF
改进YOLO v3算法及其在安全帽检测中的应用 被引量:57
20
作者 王兵 李文璟 唐欢 《计算机工程与应用》 CSCD 北大核心 2020年第9期33-40,共8页
YOLO v3目标检测算法由于其速度快、精度较高,在工业中获得了广泛应用,但存在目标函数与评价指标不统一的问题,针对此问题提出了改进YOLO v3目标检测算法。该算法改进GIoU计算方法,并与YOLO v3算法目标函数相结合,设计了一个新的目标函... YOLO v3目标检测算法由于其速度快、精度较高,在工业中获得了广泛应用,但存在目标函数与评价指标不统一的问题,针对此问题提出了改进YOLO v3目标检测算法。该算法改进GIoU计算方法,并与YOLO v3算法目标函数相结合,设计了一个新的目标函数,实现了目标函数局部最优为IoU局部最优。公共数据集VOC2007和安全帽佩戴数据集测试结果表明,相比于YOLO v3算法,改进YOLO v3的mAP-50分别提高了2.07%和2.05%。 展开更多
关键词 目标检测 YOLO v3算法 GIoU算法 安全帽佩戴检测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部